Visible to the public Biblio

Found 1156 results

Filters: Keyword is Collaboration  [Clear All Filters]
2022-07-12
Bajard, Jean-Claude, Fukushima, Kazuhide, Kiyomoto, Shinsaku, Plantard, Thomas, Sipasseuth, Arnaud, Susilo, Willy.  2021.  Generating Residue Number System Bases. 2021 IEEE 28th Symposium on Computer Arithmetic (ARITH). :86—93.
Residue number systems provide efficient techniques for speeding up calculations and/or protecting against side channel attacks when used in the context of cryptographic engineering. One of the interests of such systems is their scalability, as the existence of large bases for some specialized systems is often an open question. In this paper, we present highly optimized methods for generating large bases for residue number systems and, in some cases, the largest possible bases. We show their efficiency by demonstrating their improvement over the state-of-the-art bases reported in the literature. This work make it possible to address the problem of the scalability issue of finding new bases for a specific system that arises whenever a parameter changes, and possibly open new application avenues.
Duan, Xiaowei, Han, Yiliang, Wang, Chao, Ni, Huanhuan.  2021.  Optimization of Encrypted Communication Length Based on Generative Adversarial Network. 2021 IEEE 4th International Conference on Big Data and Artificial Intelligence (BDAI). :165—170.
With the development of artificial intelligence and cryptography, intelligent cryptography will be the trend of encrypted communications in the future. Abadi designed an encrypted communication model based on a generative adversarial network, which can communicate securely when the adversary knows the ciphertext. The communication party and the adversary fight against each other to continuously improve their own capabilities to achieve a state of secure communication. However, this model can only have a better communication effect under the 16 bits communication length, and cannot adapt to the length of modern encrypted communication. Combine the neural network structure in DCGAN to optimize the neural network of the original model, and at the same time increase the batch normalization process, and optimize the loss function in the original model. Experiments show that under the condition of the maximum 2048-bit communication length, the decryption success rate of communication reaches about 0.97, while ensuring that the adversary’s guess error rate is about 0.95, and the training speed is greatly increased to keep it below 5000 steps, ensuring safety and efficiency Communication.
Akmuratovich, Sadikov Mahmudjon, Salimboyevich, Olimov Iskandar, Abdusalomovich, Karimov Abduqodir, Ugli, Tursunov Otabek Odiljon, Botirboevna, Yusupova Shohida, Usmonjanovna, Tojikabarova Umida.  2021.  A Creation Cryptographic Protocol for the Division of Mutual Authentication and Session Key. 2021 International Conference on Information Science and Communications Technologies (ICISCT). :1—6.
In this paper is devoted a creation cryptographic protocol for the division of mutual authentication and session key. For secure protocols, suitable cryptographic algorithms were monitored.
Ibrahim, Habib, Özkaynak, Fatih.  2021.  A Random Selection Based Substitution-box Structure Dataset for Cryptology Applications. IEEE EUROCON 2021 - 19th International Conference on Smart Technologies. :321—325.
The cryptology science has gradually gained importance with our digitalized lives. Ensuring the security of data transmitted, processed and stored across digital channels is a major challenge. One of the frequently used components in cryptographic algorithms to ensure security is substitution-box structures. Random selection-based substitution-box structures have become increasingly important lately, especially because of their advantages to prevent side channel attacks. However, the low nonlinearity value of these designs is a problem. In this study, a dataset consisting of twenty different substitution-box structures have been publicly presented to the researchers. The fact that the proposed dataset has high nonlinearity values will allow it to be used in many practical applications in the future studies. The proposed dataset provides a contribution to the literature as it can be used both as an input dataset for the new post-processing algorithm and as a countermeasure to prevent the success of side-channel analyzes.
2022-06-09
Luo, Ruijiao, Huang, Chao, Peng, Yuntao, Song, Boyi, Liu, Rui.  2021.  Repairing Human Trust by Promptly Correcting Robot Mistakes with An Attention Transfer Model. 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE). :1928–1933.

In human-robot collaboration (HRC), human trust in the robot is the human expectation that a robot executes tasks with desired performance. A higher-level trust increases the willingness of a human operator to assign tasks, share plans, and reduce the interruption during robot executions, thereby facilitating human-robot integration both physically and mentally. However, due to real-world disturbances, robots inevitably make mistakes, decreasing human trust and further influencing collaboration. Trust is fragile and trust loss is triggered easily when robots show incapability of task executions, making the trust maintenance challenging. To maintain human trust, in this research, a trust repair framework is developed based on a human-to-robot attention transfer (H2R-AT) model and a user trust study. The rationale of this framework is that a prompt mistake correction restores human trust. With H2R-AT, a robot localizes human verbal concerns and makes prompt mistake corrections to avoid task failures in an early stage and to finally improve human trust. User trust study measures trust status before and after the behavior corrections to quantify the trust loss. Robot experiments were designed to cover four typical mistakes, wrong action, wrong region, wrong pose, and wrong spatial relation, validated the accuracy of H2R-AT in robot behavior corrections; a user trust study with 252 participants was conducted, and the changes in trust levels before and after corrections were evaluated. The effectiveness of the human trust repairing was evaluated by the mistake correction accuracy and the trust improvement.

Dekarske, Jason, Joshi, Sanjay S..  2021.  Human Trust of Autonomous Agent Varies With Strategy and Capability in Collaborative Grid Search Task. 2021 IEEE 2nd International Conference on Human-Machine Systems (ICHMS). :1–6.
Trust is an important emerging area of study in human-robot cooperation. Many studies have begun to look at the issue of robot (agent) capability as a predictor of human trust in the robot. However, the assumption that agent capability is the sole predictor of human trust could underestimate the complexity of the problem. This study aims to investigate the effects of agent-strategy and agent-capability in a visual search task. Fourteen subjects were recruited to partake in a web-based grid search task. They were each paired with a series of autonomous agents to search an on-screen grid to find a number of outlier objects as quickly as possible. Both the human and agent searched the grid concurrently and the human was able to see the movement of the agent. Each trial, a different autonomous agent with its assigned capability, used one of three search strategies to assist their human counterpart. After each trial, the autonomous agent reported the number of outliers it found, and the human subject was asked to determine the total number of outliers in the area. Some autonomous agents reported only a fraction of the outliers they encountered, thus coding a varying level of agent capability. Human subjects then evaluated statements related to the behavior, reliability, and trust of the agent. The results showed increased measures of trust and reliability with increasing capability. Additionally, the most legible search strategies received the highest average ratings in a measure of familiarity. Remarkably, given no prior information about capabilities or strategies that they would see, subjects were able to determine consistent trustworthiness of the agent. Furthermore, both capability and strategy of the agent had statistically significant effects on the human’s trust in the agent.
Summerer, Christoph, Regnath, Emanuel, Ehm, Hans, Steinhorst, Sebastian.  2021.  Human-based Consensus for Trust Installation in Ontologies. 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1–3.
In this paper, we propose a novel protocol to represent the human factor on a blockchain environment. Our approach allows single or groups of humans to propose data in blocks which cannot be validated automatically but need human knowledge and collaboration to be validated. Only if human-based consensus on the correctness and trustworthiness of the data is reached, the new block is appended to the blockchain. This human approach significantly extends the possibilities of blockchain applications on data types apart from financial transaction data.
Pang, Yijiang, Huang, Chao, Liu, Rui.  2021.  Synthesized Trust Learning from Limited Human Feedback for Human-Load-Reduced Multi-Robot Deployments. 2021 30th IEEE International Conference on Robot Human Interactive Communication (RO-MAN). :778–783.
Human multi-robot system (MRS) collaboration is demonstrating potentials in wide application scenarios due to the integration of human cognitive skills and a robot team’s powerful capability introduced by its multi-member structure. However, due to limited human cognitive capability, a human cannot simultaneously monitor multiple robots and identify the abnormal ones, largely limiting the efficiency of the human-MRS collaboration. There is an urgent need to proactively reduce unnecessary human engagements and further reduce human cognitive loads. Human trust in human MRS collaboration reveals human expectations on robot performance. Based on trust estimation, the work between a human and MRS will be reallocated that an MRS will self-monitor and only request human guidance in critical situations. Inspired by that, a novel Synthesized Trust Learning (STL) method was developed to model human trust in the collaboration. STL explores two aspects of human trust (trust level and trust preference), meanwhile accelerates the convergence speed by integrating active learning to reduce human workload. To validate the effectiveness of the method, tasks "searching victims in the context of city rescue" were designed in an open-world simulation environment, and a user study with 10 volunteers was conducted to generate real human trust feedback. The results showed that by maximally utilizing human feedback, the STL achieved higher accuracy in trust modeling with a few human feedback, effectively reducing human interventions needed for modeling an accurate trust, therefore reducing human cognitive load in the collaboration.
Mangino, Antonio, Bou-Harb, Elias.  2021.  A Multidimensional Network Forensics Investigation of a State-Sanctioned Internet Outage. 2021 International Wireless Communications and Mobile Computing (IWCMC). :813–818.
In November 2019, the government of Iran enforced a week-long total Internet blackout that prevented the majority of Internet connectivity into and within the nation. This work elaborates upon the Iranian Internet blackout by characterizing the event through Internet-scale, near realtime network traffic measurements. Beginning with an investigation of compromised machines scanning the Internet, nearly 50 TB of network traffic data was analyzed. This work discovers 856,625 compromised IP addresses, with 17,182 attributed to the Iranian Internet space. By the second day of the Internet shut down, these numbers dropped by 18.46% and 92.81%, respectively. Empirical analysis of the Internet-of-Things (IoT) paradigm revealed that over 90% of compromised Iranian hosts were fingerprinted as IoT devices, which saw a significant drop throughout the shutdown (96.17% decrease by the blackout's second day). Further examination correlates BGP reachability metrics and related data with geolocation databases to statistically evaluate the number of reachable Iranian ASNs (dropping from approximately 1100 to under 200 reachable networks). In-depth investigation reveals the top affected ASNs, providing network forensic evidence of the longitudinal unplugging of such key networks. Lastly, the impact's interruption of the Bitcoin cryptomining market is highlighted, disclosing a massive spike in unsuccessful (i.e., pending) transactions. When combined, these network traffic measurements provide a multidimensional perspective of the Iranian Internet shutdown.
Hoarau, Kevin, Tournoux, Pierre Ugo, Razafindralambo, Tahiry.  2021.  Suitability of Graph Representation for BGP Anomaly Detection. 2021 IEEE 46th Conference on Local Computer Networks (LCN). :305–310.
The Border Gateway Protocol (BGP) is in charge of the route exchange at the Internet scale. Anomalies in BGP can have several causes (mis-configuration, outage and attacks). These anomalies are classified into large or small scale anomalies. Machine learning models are used to analyze and detect anomalies from the complex data extracted from BGP behavior. Two types of data representation can be used inside the machine learning models: a graph representation of the network (graph features) or a statistical computation on the data (statistical features). In this paper, we evaluate and compare the accuracy of machine learning models using graph features and statistical features on both large and small scale BGP anomalies. We show that statistical features have better accuracy for large scale anomalies, and graph features increase the detection accuracy by 15% for small scale anomalies and are well suited for BGP small scale anomaly detection.
Nagai, Yuki, Watanabe, Hiroki, Kondo, Takao, Teraoka, Fumio.  2021.  LiONv2: An Experimental Network Construction Tool Considering Disaggregation of Network Configuration and Device Configuration. 2021 IEEE 7th International Conference on Network Softwarization (NetSoft). :171–175.
An experimental network environment plays an important role to examine new systems and protocols. We have developed an experimental network construction tool called LiONv1 (Lightweight On-Demand Networking, ver.1). LiONv1 satisfies the following four requirements: programmer-friendly configuration file based on Infrastructure as Code, multiple virtualization technologies for virtual nodes, physical topology conscious virtual node placement, and L3 protocol agnostic virtual networks. None of existing experimental network environments satisfy all the four requirements. In this paper, we develop LiONv2 which satisfies three more requirements: diversity of available network devices, Internet-scale deployment, and disaggregation of network configuration and device configuration. LiONv2 employs NETCONF and YANG to achieve diversity of available network devices and Internet-scale deployment. LiONv2 also defines two YANG models which disaggregate network configuration and device configuration. LiONv2 is implemented in Go and C languages with public libraries for Go. Measurement results show that construction time of a virtual network is irrelevant to the number of virtual nodes if a single virtual node is created per physical node.
Pletinckx, Stijn, Jansen, Geert Habben, Brussen, Arjen, van Wegberg, Rolf.  2021.  Cash for the Register? Capturing Rationales of Early COVID-19 Domain Registrations at Internet-scale 2021 12th International Conference on Information and Communication Systems (ICICS). :41–48.
The COVID-19 pandemic introduced novel incentives for adversaries to exploit the state of turmoil. As we have witnessed with the increase in for instance phishing attacks and domain name registrations piggybacking the COVID-19 brand name. In this paper, we perform an analysis at Internet-scale of COVID-19 domain name registrations during the early stages of the virus' spread, and investigate the rationales behind them. We leverage the DomainTools COVID-19 Threat List and additional measurements to analyze over 150,000 domains registered between January 1st 2020 and May 1st 2020. We identify two key rationales for covid-related domain registrations. Online marketing, by either redirecting traffic or hosting a commercial service on the domain, and domain parking, by registering domains containing popular COVID-19 keywords, presumably anticipating a profit when reselling the domain later on. We also highlight three public policy take-aways that can counteract this domain registration behavior.
Pour, Morteza Safaei, Watson, Dylan, Bou-Harb, Elias.  2021.  Sanitizing the IoT Cyber Security Posture: An Operational CTI Feed Backed up by Internet Measurements. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :497–506.

The Internet-of-Things (IoT) paradigm at large continues to be compromised, hindering the privacy, dependability, security, and safety of our nations. While the operational security communities (i.e., CERTS, SOCs, CSIRT, etc.) continue to develop capabilities for monitoring cyberspace, tools which are IoT-centric remain at its infancy. To this end, we address this gap by innovating an actionable Cyber Threat Intelligence (CTI) feed related to Internet-scale infected IoT devices. The feed analyzes, in near real-time, 3.6TB of daily streaming passive measurements ( ≈ 1M pps) by applying a custom-developed learning methodology to distinguish between compromised IoT devices and non-IoT nodes, in addition to labeling the type and vendor. The feed is augmented with third party information to provide contextual information. We report on the operation, analysis, and shortcomings of the feed executed during an initial deployment period. We make the CTI feed available for ingestion through a public, authenticated API and a front-end platform.

2022-06-08
Giehl, Alexander, Heinl, Michael P., Busch, Maximilian.  2021.  Leveraging Edge Computing and Differential Privacy to Securely Enable Industrial Cloud Collaboration Along the Value Chain. 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE). :2023–2028.
Big data continues to grow in the manufacturing domain due to increasing interconnectivity on the shop floor in the course of the fourth industrial revolution. The optimization of machines based on either real-time or historical machine data provides benefits to both machine producers and operators. In order to be able to make use of these opportunities, it is necessary to access the machine data, which can include sensitive information such as intellectual property. Employing the use case of machine tools, this paper presents a solution enabling industrial data sharing and cloud collaboration while protecting sensitive information. It employs the edge computing paradigm to apply differential privacy to machine data in order to protect sensitive information and simultaneously allow machine producers to perform the necessary calculations and analyses using this data.
2022-06-06
Yeruva, Vijaya Kumari, Chandrashekar, Mayanka, Lee, Yugyung, Rydberg-Cox, Jeff, Blanton, Virginia, Oyler, Nathan A.  2020.  Interpretation of Sentiment Analysis with Human-in-the-Loop. 2020 IEEE International Conference on Big Data (Big Data). :3099–3108.
Human-in-the-Loop has been receiving special attention from the data science and machine learning community. It is essential to realize the advantages of human feedback and the pressing need for manual annotation to improve machine learning performance. Recent advancements in natural language processing (NLP) and machine learning have created unique challenges and opportunities for digital humanities research. In particular, there are ample opportunities for NLP and machine learning researchers to analyze data from literary texts and use these complex source texts to broaden our understanding of human sentiment using the human-in-the-loop approach. This paper presents our understanding of how human annotators differ from machine annotators in sentiment analysis tasks and how these differences can contribute to designing systems for the "human in the loop" sentiment analysis in complex, unstructured texts. We further explore the challenges and benefits of the human-machine collaboration for sentiment analysis using a case study in Greek tragedy and address some open questions about collaborative annotation for sentiments in literary texts. We focus primarily on (i) an analysis of the challenges in sentiment analysis tasks for humans and machines, and (ii) whether consistent annotation results are generated from multiple human annotators and multiple machine annotators. For human annotators, we have used a survey-based approach with about 60 college students. We have selected six popular sentiment analysis tools for machine annotators, including VADER, CoreNLP's sentiment annotator, TextBlob, LIME, Glove+LSTM, and RoBERTa. We have conducted a qualitative and quantitative evaluation with the human-in-the-loop approach and confirmed our observations on sentiment tasks using the Greek tragedy case study.
Silvarajoo, Vimal Raj, Yun Lim, Shu, Daud, Paridah.  2021.  Digital Evidence Case Management Tool for Collaborative Digital Forensics Investigation. 2021 3rd International Cyber Resilience Conference (CRC). :1–4.
Digital forensics investigation process begins with the acquisition, investigation until the presentation of investigation findings. Investigators are required to manage bits and pieces of digital evidence in the cloud and to correlate with evidence found in physical machines and network. The process could be made easy with a proper case management tool that is hosted in the web. The challenge of maintaining chain of custody, determining access to evidence, assignment of forensics investigator could be overcome when digital evidence is fully integrated in a single platform. Our proposed case management tool streamlines information gathering and integrates information on different platforms, shares information, tracks cases, and uploads data directly into a database. In addition, the case management tool facilitates the collaboration of investigators through sharing of forensics findings. These features allow case owner or administrator to track and monitor investigation progress in a forensically sound manner.
2022-05-24
Grewe, Dennis, Wagner, Marco, Ambalavanan, Uthra, Liu, Liming, Nayak, Naresh, Schildt, Sebastian.  2021.  On the Design of an Information-Centric Networking Extension for IoT APIs. 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall). :1–6.
Both the Internet of Things (IoT) and Information Centric Networking (ICN) have gathered a lot of attention from both research and industry in recent years. While ICN has proved to be beneficial in many situations, it is not widely deployed outside research projects, also not addressing needs of IoT application programming interfaces (APIs). On the other hand, today's IoT solutions are built on top of the host-centric communication model associated with the usage of the Internet Protocol (IP). This paper contributes a discussion on the need of an integration of a specific form of IoT APIs, namely WebSocket based streaming APIs, into an ICN. Furthermore, different access models are discussed and requirements are derived from real world APIs. Finally, the design of an ICN-style extension is presented using one of the examined APIs.
Safitri, Cutifa, Nguyen, Quang Ngoc, Deo Lumoindong, Christoforus Williem, Ayu, Media Anugerah, Mantoro, Teddy.  2021.  Advanced Forwarding Strategy Towards Delay Tolerant Information-Centric Networking. 2021 IEEE 7th International Conference on Computing, Engineering and Design (ICCED). :1–5.
Information-Centric Networking (ICN) is among the promising architecture that can drive the need and versatility towards the future generation (xG) needs. In the future, support for network communication relies on the area of telemedicine, autonomous vehicles, and disaster recovery. In the disaster recovery case, there is a high possibility where the communication path is severed. Multicast communication and DTN-friendly route algorithm are becoming suitable options to send a packet message to get a faster response and to see any of the nodes available for service, this approach could give burden to the core network. Also, during disaster cases, many people would like to communicate, receive help, and find family members. Flooding the already disturbed/severed network will further reduce communication performance efficiency even further. Thus, this study takes into consideration prioritization factors to allow networks to process and delivering priority content. For this purpose, the proposed technique introduces the Routable Prefix Identifier (RP-ID) that takes into account the prioritization factor to enable optimization in Delay Tolerant ICN communication.
Huang, Yudong, Wang, Shuo, Feng, Tao, Wang, Jiasen, Huang, Tao, Huo, Ru, Liu, Yunjie.  2021.  Towards Network-Wide Scheduling for Cyclic Traffic in IP-based Deterministic Networks. 2021 4th International Conference on Hot Information-Centric Networking (HotICN). :117–122.
The emerging time-sensitive applications, such as industrial automation, smart grids, and telesurgery, pose strong demands for enabling large-scale IP-based deterministic networks. The IETF DetNet working group recently proposes a Cycle Specified Queuing and Forwarding (CSQF) solution. However, CSQF only specifies an underlying device-level primitive while how to achieve network-wide flow scheduling remains undefined. Previous scheduling mechanisms are mostly oriented to the context of local area networks, making them inapplicable to the cyclic traffic in wide area networks. In this paper, we design the Cycle Tags Planning (CTP) mechanism, a first mathematical model to enable network-wide scheduling for cyclic traffic in large-scale deterministic networks. Then, a novel scheduling algorithm named flow offset and cycle shift (FO-CS) is designed to compute the flows' cycle tags. The FO-CS algorithm is evaluated under long-distance network topologies in remote industrial control scenarios. Compared with the Naive algorithm without using FO-CS, simulation results demonstrate that FO-CS improves the scheduling flow number by 31.2% in few seconds.
Nakamura, Ryo, Kamiyama, Noriaki.  2021.  Proposal of Keyword-Based Information-Centric Delay-Tolerant Network. 2021 IEEE International Workshop Technical Committee on Communications Quality and Reliability (CQR 2021). :1–7.
In this paper, we focus on Information-Centric Delay-Tolerant Network (ICDTN), which incorporates the communication paradigm of Information-Centric Networking (ICN) into Delay-Tolerant Networking (DTN). Conventional ICNs adopt a naming scheme that names the content with the content identifier. However, a past study proposed an alternative naming scheme that describes the name of content with the content descriptor. We believe that, in ICDTN, it is more suitable to utilize the approach using the content descriptor. In this paper, we therefore propose keyword-based ICDTN that resolves content requests and deliveries contents based on keywords, i.e., content descriptor, in the request and response messages.
Lei, Kai, Ye, Hao, Liang, Yuzhi, Xiao, Jing, Chen, Peiwu.  2021.  Towards a Translation-Based Method for Dynamic Heterogeneous Network Embedding. ICC 2021 - IEEE International Conference on Communications. :1–6.
Network embedding, which aims to map the discrete network topology to a continuous low-dimensional representation space with the major topological properties preserved, has emerged as an essential technique to support various network inference tasks. However, incorporating both the evolutionary nature and the network's heterogeneity remains a challenge for existing network embedding methods. In this study, we propose a novel Translation-Based Dynamic Heterogeneous Network Embedding (TransDHE) approach to consider both the aspects simultaneously. For a dynamic heterogeneous network with a sequence of snapshots and multiple types of nodes and edges, we introduce a translation-based embedding module to capture the heterogeneous characteristics (e.g., type information) of each single snapshot. An orthogonal alignment module and RNN-based aggregation module are then applied to explore the evolutionary patterns among multiple successive snapshots for the final representation learning. Extensive experiments on a set of real-world networks demonstrate that TransDHE can derive the more informative embedding result for the network dynamic and heterogeneity over state-of-the-art network embedding baselines.
Fazea, Yousef, Mohammed, Fathey, Madi, Mohammed, Alkahtani, Ammar Ahmed.  2021.  Review on Network Function Virtualization in Information-Centric Networking. 2021 International Conference of Technology, Science and Administration (ICTSA). :1–6.
Network function virtualization (NFV / VNF) and information-centric networking (ICN) are two trending technologies that have attracted expert's attention. NFV is a technique in which network functions (NF) are decoupling from commodity hardware to run on to create virtual communication services. The virtualized class nodes can bring several advantages such as reduce Operating Expenses (OPEX) and Capital Expenses (CAPEX). On the other hand, ICN is a technique that breaks the host-centric paradigm and shifts the focus to “named information” or content-centric. ICN provides highly efficient content retrieval network architecture where popular contents are cached to minimize duplicate transmissions and allow mobile users to access popular contents from caches of network gateways. This paper investigates the implementation of NFV in ICN. Besides, reviewing and discussing the weaknesses and strengths of each architecture in a critical analysis manner of both network architectures. Eventually, highlighted the current issues and future challenges of both architectures.
Pellenz, Marcelo E., Lachowski, Rosana, Jamhour, Edgard, Brante, Glauber, Moritz, Guilherme Luiz, Souza, Richard Demo.  2021.  In-Network Data Aggregation for Information-Centric WSNs using Unsupervised Machine Learning Techniques. 2021 IEEE Symposium on Computers and Communications (ISCC). :1–7.
IoT applications are changing our daily lives. These innovative applications are supported by new communication technologies and protocols. Particularly, the information-centric network (ICN) paradigm is well suited for many IoT application scenarios that involve large-scale wireless sensor networks (WSNs). Even though the ICN approach can significantly reduce the network traffic by optimizing the process of information recovery from network nodes, it is also possible to apply data aggregation strategies. This paper proposes an unsupervised machine learning-based data aggregation strategy for multi-hop information-centric WSNs. The results show that the proposed algorithm can significantly reduce the ICN data traffic while having reduced information degradation.
Raza, Khuhawar Arif, Asheralieva, Alia, Karim, Md Monjurul, Sharif, Kashif, Gheisari, Mehdi, Khan, Salabat.  2021.  A Novel Forwarding and Caching Scheme for Information-Centric Software-Defined Networks. 2021 International Symposium on Networks, Computers and Communications (ISNCC). :1–8.

This paper integrates Software-Defined Networking (SDN) and Information -Centric Networking (ICN) framework to enable low latency-based stateful routing and caching management by leveraging a novel forwarding and caching strategy. The framework is implemented in a clean- slate environment that does not rely on the TCP/IP principle. It utilizes Pending Interest Tables (PIT) instead of Forwarding Information Base (FIB) to perform data dissemination among peers in the proposed IC-SDN framework. As a result, all data exchanged and cached in the system are organized in chunks with the same interest resulting in reduced packet overhead costs. Additionally, we propose an efficient caching strategy that leverages in- network caching and naming of contents through an IC-SDN controller to support off- path caching. The testbed evaluation shows that the proposed IC-SDN implementation achieves an increased throughput and reduced latency compared to the traditional information-centric environment, especially in the high load scenarios.

Sukjaimuk, Rungrot, Nguyen, Quang N., Sato, Takuro.  2021.  An Efficient Congestion Control Model utilizing IoT wireless sensors in Information-Centric Networks. 2021 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering. :210–213.
Congestion control is one of the essential keys to enhance network efficiency so that the network can perform well even in the case of packet drop. This problem is even more challenging in Information-Centric Networking (ICN), a typical Future Internet design, which employs the packet flooding policy for forwarding the information. To diminish the high traffic load due to the huge number of packets in the era of the Internet of Things (IoT), this paper proposes an effective caching and forwarding algorithm to diminish the congestion rate of the IoT wireless sensor in ICN. The proposed network system utilizes accumulative popularity-based delay transmission time for forwarding strategy and includes the consecutive chunks-based segment caching scheme. The evaluation results using ndnSIM, a widely-used ns-3 based ICN simulator, demonstrated that the proposed system can achieve less interest packet drop rate, more cache hit rate, and higher network throughput, compared to the relevant ICN-based benchmarks. These results prove that the proposed ICN design can achieve higher network efficiency with a lower congestion rate than that of the other related ICN systems using IoT sensors.