Visible to the public Biblio

Found 1156 results

Filters: Keyword is Collaboration  [Clear All Filters]
2021-02-22
Nour, B., Khelifi, H., Hussain, R., Moungla, H., Bouk, S. H..  2020.  A Collaborative Multi-Metric Interface Ranking Scheme for Named Data Networks. 2020 International Wireless Communications and Mobile Computing (IWCMC). :2088–2093.
Named Data Networking (NDN) uses the content name to enable content sharing in a network using Interest and Data messages. In essence, NDN supports communication through multiple interfaces, therefore, it is imperative to think of the interface that better meets the communication requirements of the application. The current interface ranking is based on single static metric such as minimum number of hops, maximum satisfaction rate, or minimum network delay. However, this ranking may adversely affect the network performance. To fill the gap, in this paper, we propose a new multi-metric robust interface ranking scheme that combines multiple metrics with different objective functions. Furthermore, we also introduce different forwarding modes to handle the forwarding decision according to the available ranked interfaces. Extensive simulation experiments demonstrate that the proposed scheme selects the best and suitable forwarding interface to deliver content.
2021-02-16
Yeom, S., Kim, K..  2020.  Improving Performance of Collaborative Source-Side DDoS Attack Detection. 2020 21st Asia-Pacific Network Operations and Management Symposium (APNOMS). :239—242.
Recently, as the threat of Distributed Denial-of-Service attacks exploiting IoT devices has spread, source-side Denial-of-Service attack detection methods are being studied in order to quickly detect attacks and find their locations. Moreover, to mitigate the limitation of local view of source-side detection, a collaborative attack detection technique is required to share detection results on each source-side network. In this paper, a new collaborative source-side DDoS attack detection method is proposed for detecting DDoS attacks on multiple networks more correctly, by considering the detecting performance on different time zone. The results of individual attack detection on each network are weighted based on detection rate and false positive rate corresponding to the time zone of each network. By gathering the weighted detection results, the proposed method determines whether a DDoS attack happens. Through extensive evaluation with real network traffic data, it is confirmed that the proposed method reduces false positive rate by 35% while maintaining high detection rate.
2021-02-03
Rabby, M. K. Monir, Khan, M. Altaf, Karimoddini, A., Jiang, S. X..  2020.  Modeling of Trust Within a Human-Robot Collaboration Framework. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :4267—4272.

In this paper, a time-driven performance-aware mathematical model for trust in the robot is proposed for a Human-Robot Collaboration (HRC) framework. The proposed trust model is based on both the human operator and the robot performances. The human operator’s performance is modeled based on both the physical and cognitive performances, while the robot performance is modeled over its unpredictable, predictable, dependable, and faithful operation regions. The model is validated via different simulation scenarios. The simulation results show that the trust in the robot in the HRC framework is governed by robot performance and human operator’s performance and can be improved by enhancing the robot performance.

2021-02-01
Wang, H., Li, Y., Wang, Y., Hu, H., Yang, M.-H..  2020.  Collaborative Distillation for Ultra-Resolution Universal Style Transfer. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :1857–1866.
Universal style transfer methods typically leverage rich representations from deep Convolutional Neural Network (CNN) models (e.g., VGG-19) pre-trained on large collections of images. Despite the effectiveness, its application is heavily constrained by the large model size to handle ultra-resolution images given limited memory. In this work, we present a new knowledge distillation method (named Collaborative Distillation) for encoder-decoder based neural style transfer to reduce the convolutional filters. The main idea is underpinned by a finding that the encoder-decoder pairs construct an exclusive collaborative relationship, which is regarded as a new kind of knowledge for style transfer models. Moreover, to overcome the feature size mismatch when applying collaborative distillation, a linear embedding loss is introduced to drive the student network to learn a linear embedding of the teacher's features. Extensive experiments show the effectiveness of our method when applied to different universal style transfer approaches (WCT and AdaIN), even if the model size is reduced by 15.5 times. Especially, on WCT with the compressed models, we achieve ultra-resolution (over 40 megapixels) universal style transfer on a 12GB GPU for the first time. Further experiments on optimization-based stylization scheme show the generality of our algorithm on different stylization paradigms. Our code and trained models are available at https://github.com/mingsun-tse/collaborative-distillation.
Papadopoulos, A. V., Esterle, L..  2020.  Situational Trust in Self-aware Collaborating Systems. 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :91–94.
Trust among humans affects the way we interact with each other. In autonomous systems, this trust is often predefined and hard-coded before the systems are deployed. However, when systems encounter unfolding situations, requiring them to interact with others, a notion of trust will be inevitable. In this paper, we discuss trust as a fundamental measure to enable an autonomous system to decide whether or not to interact with another system, whether biological or artificial. These decisions become increasingly important when continuously integrating with others during runtime.
Hou, M..  2020.  IMPACT: A Trust Model for Human-Agent Teaming. 2020 IEEE International Conference on Human-Machine Systems (ICHMS). :1–4.
A trust model IMPACT: Intention, Measurability, Predictability, Agility, Communication, and Transparency has been conceptualized to build human trust in autonomous agents. The six critical characteristics must be exhibited by the agents in order to gain and maintain the trust from their human partners towards an effective and collaborative team in achieving common goals. The IMPACT model guided a design of an intelligent adaptive decision aid for dynamic target engagement processes in a military context. Positive feedback from subject matter experts participated in a large scale joint exercise controlling multiple unmanned vehicles indicated the effectiveness of the decision aid. It also demonstrated the utility of the IMPACT model as design principles for building up a trusted human-agent teaming.
2021-01-11
Wu, N., Farokhi, F., Smith, D., Kaafar, M. A..  2020.  The Value of Collaboration in Convex Machine Learning with Differential Privacy. 2020 IEEE Symposium on Security and Privacy (SP). :304–317.
In this paper, we apply machine learning to distributed private data owned by multiple data owners, entities with access to non-overlapping training datasets. We use noisy, differentially-private gradients to minimize the fitness cost of the machine learning model using stochastic gradient descent. We quantify the quality of the trained model, using the fitness cost, as a function of privacy budget and size of the distributed datasets to capture the trade-off between privacy and utility in machine learning. This way, we can predict the outcome of collaboration among privacy-aware data owners prior to executing potentially computationally-expensive machine learning algorithms. Particularly, we show that the difference between the fitness of the trained machine learning model using differentially-private gradient queries and the fitness of the trained machine model in the absence of any privacy concerns is inversely proportional to the size of the training datasets squared and the privacy budget squared. We successfully validate the performance prediction with the actual performance of the proposed privacy-aware learning algorithms, applied to: financial datasets for determining interest rates of loans using regression; and detecting credit card frauds using support vector machines.
2020-12-14
Huang, Y., Wang, W., Wang, Y., Jiang, T., Zhang, Q..  2020.  Lightweight Sybil-Resilient Multi-Robot Networks by Multipath Manipulation. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :2185–2193.

Wireless networking opens up many opportunities to facilitate miniaturized robots in collaborative tasks, while the openness of wireless medium exposes robots to the threats of Sybil attackers, who can break the fundamental trust assumption in robotic collaboration by forging a large number of fictitious robots. Recent advances advocate the adoption of bulky multi-antenna systems to passively obtain fine-grained physical layer signatures, rendering them unaffordable to miniaturized robots. To overcome this conundrum, this paper presents ScatterID, a lightweight system that attaches featherlight and batteryless backscatter tags to single-antenna robots to defend against Sybil attacks. Instead of passively "observing" signatures, ScatterID actively "manipulates" multipath propagation by using backscatter tags to intentionally create rich multipath features obtainable to a single-antenna robot. These features are used to construct a distinct profile to detect the real signal source, even when the attacker is mobile and power-scaling. We implement ScatterID on the iRobot Create platform and evaluate it in typical indoor and outdoor environments. The experimental results show that our system achieves a high AUROC of 0.988 and an overall accuracy of 96.4% for identity verification.

2020-12-11
Correia, A., Fonseca, B., Paredes, H., Schneider, D., Jameel, S..  2019.  Development of a Crowd-Powered System Architecture for Knowledge Discovery in Scientific Domains. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). :1372—1377.
A substantial amount of work is often overlooked due to the exponential rate of growth in global scientific output across all disciplines. Current approaches for addressing this issue are usually limited in scope and often restrict the possibility of obtaining multidisciplinary views in practice. To tackle this problem, researchers can now leverage an ecosystem of citizens, volunteers and crowd workers to perform complex tasks that are either difficult for humans and machines to solve alone. Motivated by the idea that human crowds and computer algorithms have complementary strengths, we present an approach where the machine will learn from crowd behavior in an iterative way. This approach is embodied in the architecture of SciCrowd, a crowd-powered human-machine hybrid system designed to improve the analysis and processing of large amounts of publication records. To validate the proposal's feasibility, a prototype was developed and an initial evaluation was conducted to measure its robustness and reliability. We conclude this paper with a set of implications for design.
2020-12-02
Narang, S., Byali, M., Dayama, P., Pandit, V., Narahari, Y..  2019.  Design of Trusted B2B Market Platforms using Permissioned Blockchains and Game Theory. 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :385—393.

Trusted collaboration satisfying the requirements of (a) adequate transparency and (b) preservation of privacy of business sensitive information is a key factor to ensure the success and adoption of online business-to-business (B2B) collaboration platforms. Our work proposes novel ways of stringing together game theoretic modeling, blockchain technology, and cryptographic techniques to build such a platform for B2B collaboration involving enterprise buyers and sellers who may be strategic. The B2B platform builds upon three ideas. The first is to use a permissioned blockchain with smart contracts as the technical infrastructure for building the platform. Second, the above smart contracts implement deep business logic which is derived using a rigorous analysis of a repeated game model of the strategic interactions between buyers and sellers to devise strategies to induce honest behavior from buyers and sellers. Third, we present a formal framework that captures the essential requirements for secure and private B2B collaboration, and, in this direction, we develop cryptographic regulation protocols that, in conjunction with the blockchain, help implement such a framework. We believe our work is an important first step in the direction of building a platform that enables B2B collaboration among strategic and competitive agents while maximizing social welfare and addressing the privacy concerns of the agents.

2020-12-01
Kalyanaraman, A., Halappanavar, M..  2018.  Guest Editorial: Advances in Parallel Graph Processing: Algorithms, Architectures, and Application Frameworks. IEEE Transactions on Multi-Scale Computing Systems. 4:188—189.

The papers in this special section explore recent advancements in parallel graph processing. In the sphere of modern data science and data-driven applications, graph algorithms have achieved a pivotal place in advancing the state of scientific discovery and knowledge. Nearly three centuries of ideas have made graph theory and its applications a mature area in computational sciences. Yet, today we find ourselves at a crossroads between theory and application. Spurred by the digital revolution, data from a diverse range of high throughput channels and devices, from across internet-scale applications, are starting to mark a new era in data-driven computing and discovery. Building robust graph models and implementing scalable graph application frameworks in the context of this new era are proving to be significant challenges. Concomitant to the digital revolution, we have also experienced an explosion in computing architectures, with a broad range of multicores, manycores, heterogeneous platforms, and hardware accelerators (CPUs, GPUs) being actively developed and deployed within servers and multinode clusters. Recent advances have started to show that in more than one way, these two fields—graph theory and architectures–are capable of benefiting and in fact spurring new research directions in one another. This special section is aimed at introducing some of the new avenues of cutting-edge research happening at the intersection of graph algorithm design and their implementation on advanced parallel architectures.

Xu, W., Peng, Y..  2018.  SharaBLE: A Software Framework for Shared Usage of BLE Devices over the Internet. 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). :381—385.

With the development of Internet of Things, numerous IoT devices have been brought into our daily lives. Bluetooth Low Energy (BLE), due to the low energy consumption and generic service stack, has become one of the most popular wireless communication technologies for IoT. However, because of the short communication range and exclusive connection pattern, a BLE-equipped device can only be used by a single user near the device. To fully explore the benefits of BLE and make BLE-equipped devices truly accessible over the Internet as IoT devices, in this paper, we propose a cloud-based software framework that can enable multiple users to interact with various BLE IoT devices over the Internet. This framework includes an agent program, a suite of services hosting in cloud, and a set of RESTful APIs exposed to Internet users. Given the availability of this framework, the access to BLE devices can be extended from local to the Internet scale without any software or hardware changes to BLE devices, and more importantly, shared usage of remote BLE devices over the Internet is also made available.

Li, W., Guo, D., Li, K., Qi, H., Zhang, J..  2018.  iDaaS: Inter-Datacenter Network as a Service. IEEE Transactions on Parallel and Distributed Systems. 29:1515—1529.

Increasing number of Internet-scale applications, such as video streaming, incur huge amount of wide area traffic. Such traffic over the unreliable Internet without bandwidth guarantee suffers unpredictable network performance. This result, however, is unappealing to the application providers. Fortunately, Internet giants like Google and Microsoft are increasingly deploying their private wide area networks (WANs) to connect their global datacenters. Such high-speed private WANs are reliable, and can provide predictable network performance. In this paper, we propose a new type of service-inter-datacenter network as a service (iDaaS), where traditional application providers can reserve bandwidth from those Internet giants to guarantee their wide area traffic. Specifically, we design a bandwidth trading market among multiple iDaaS providers and application providers, and concentrate on the essential bandwidth pricing problem. The involved challenging issue is that the bandwidth price of each iDaaS provider is not only influenced by other iDaaS providers, but also affected by the application providers. To address this issue, we characterize the interaction between iDaaS providers and application providers using a Stackelberg game model, and analyze the existence and uniqueness of the equilibrium. We further present an efficient bandwidth pricing algorithm by blending the advantage of a geometrical Nash bargaining solution and the demand segmentation method. For comparison, we present two bandwidth reservation algorithms, where each iDaaS provider's bandwidth is reserved in a weighted fair manner and a max-min fair manner, respectively. Finally, we conduct comprehensive trace-driven experiments. The evaluation results show that our proposed algorithms not only ensure the revenue of iDaaS providers, but also provide bandwidth guarantee for application providers with lower bandwidth price per unit.

Yang, R., Ouyang, X., Chen, Y., Townend, P., Xu, J..  2018.  Intelligent Resource Scheduling at Scale: A Machine Learning Perspective. 2018 IEEE Symposium on Service-Oriented System Engineering (SOSE). :132—141.

Resource scheduling in a computing system addresses the problem of packing tasks with multi-dimensional resource requirements and non-functional constraints. The exhibited heterogeneity of workload and server characteristics in Cloud-scale or Internet-scale systems is adding further complexity and new challenges to the problem. Compared with,,,, existing solutions based on ad-hoc heuristics, Machine Learning (ML) has the potential to improve further the efficiency of resource management in large-scale systems. In this paper we,,,, will describe and discuss how ML could be used to understand automatically both workloads and environments, and to help to cope with scheduling-related challenges such as consolidating co-located workloads, handling resource requests, guaranteeing application's QoSs, and mitigating tailed stragglers. We will introduce a generalized ML-based solution to large-scale resource scheduling and demonstrate its effectiveness through a case study that deals with performance-centric node classification and straggler mitigation. We believe that an MLbased method will help to achieve architectural optimization and efficiency improvement.

Garbo, A., Quer, S..  2018.  A Fast MPEG’s CDVS Implementation for GPU Featured in Mobile Devices. IEEE Access. 6:52027—52046.
The Moving Picture Experts Group's Compact Descriptors for Visual Search (MPEG's CDVS) intends to standardize technologies in order to enable an interoperable, efficient, and cross-platform solution for internet-scale visual search applications and services. Among the key technologies within CDVS, we recall the format of visual descriptors, the descriptor extraction process, and the algorithms for indexing and matching. Unfortunately, these steps require precision and computation accuracy. Moreover, they are very time-consuming, as they need running times in the order of seconds when implemented on the central processing unit (CPU) of modern mobile devices. In this paper, to reduce computation times and maintain precision and accuracy, we re-design, for many-cores embedded graphical processor units (GPUs), all main local descriptor extraction pipeline phases of the MPEG's CDVS standard. To reach this goal, we introduce new techniques to adapt the standard algorithm to parallel processing. Furthermore, to reduce memory accesses and efficiently distribute the kernel workload, we use new approaches to store and retrieve CDVS information on proper GPU data structures. We present a complete experimental analysis on a large and standard test set. Our experiments show that our GPU-based approach is remarkably faster than the CPU-based reference implementation of the standard, and it maintains a comparable precision in terms of true and false positive rates.
Zhang, Y., Deng, L., Chen, M., Wang, P..  2018.  Joint Bidding and Geographical Load Balancing for Datacenters: Is Uncertainty a Blessing or a Curse? IEEE/ACM Transactions on Networking. 26:1049—1062.

We consider the scenario where a cloud service provider (CSP) operates multiple geo-distributed datacenters to provide Internet-scale service. Our objective is to minimize the total electricity and bandwidth cost by jointly optimizing electricity procurement from wholesale markets and geographical load balancing (GLB), i.e., dynamically routing workloads to locations with cheaper electricity. Under the ideal setting where exact values of market prices and workloads are given, this problem reduces to a simple linear programming and is easy to solve. However, under the realistic setting where only distributions of these variables are available, the problem unfolds into a non-convex infinite-dimensional one and is challenging to solve. One of our main contributions is to develop an algorithm that is proven to solve the challenging problem optimally, by exploring the full design space of strategic bidding. Trace-driven evaluations corroborate our theoretical results, demonstrate fast convergence of our algorithm, and show that it can reduce the cost for the CSP by up to 20% as compared with baseline alternatives. This paper highlights the intriguing role of uncertainty in workloads and market prices, measured by their variances. While uncertainty in workloads deteriorates the cost-saving performance of joint electricity procurement and GLB, counter-intuitively, uncertainty in market prices can be exploited to achieve a cost reduction even larger than the setting without price uncertainty.

Kathiravelu, P., Chiesa, M., Marcos, P., Canini, M., Veiga, L..  2018.  Moving Bits with a Fleet of Shared Virtual Routers. 2018 IFIP Networking Conference (IFIP Networking) and Workshops. :1—9.

The steady decline of IP transit prices in the past two decades has helped fuel the growth of traffic demands in the Internet ecosystem. Despite the declining unit pricing, bandwidth costs remain significant due to ever-increasing scale and reach of the Internet, combined with the price disparity between the Internet's core hubs versus remote regions. In the meantime, cloud providers have been auctioning underutilized computing resources in their marketplace as spot instances for a much lower price, compared to their on-demand instances. This state of affairs has led the networking community to devote extensive efforts to cloud-assisted networks - the idea of offloading network functionality to cloud platforms, ultimately leading to more flexible and highly composable network service chains.We initiate a critical discussion on the economic and technological aspects of leveraging cloud-assisted networks for Internet-scale interconnections and data transfers. Namely, we investigate the prospect of constructing a large-scale virtualized network provider that does not own any fixed or dedicated resources and runs atop several spot instances. We construct a cloud-assisted overlay as a virtual network provider, by leveraging third-party cloud spot instances. We identify three use case scenarios where such approach will not only be economically and technologically viable but also provide performance benefits compared to current commercial offerings of connectivity and transit providers.

Sunny, S. M. N. A., Liu, X., Shahriar, M. R..  2018.  Remote Monitoring and Online Testing of Machine Tools for Fault Diagnosis and Maintenance Using MTComm in a Cyber-Physical Manufacturing Cloud. 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). :532—539.

Existing systems allow manufacturers to acquire factory floor data and perform analysis with cloud applications for machine health monitoring, product quality prediction, fault diagnosis and prognosis etc. However, they do not provide capabilities to perform testing of machine tools and associated components remotely, which is often crucial to identify causes of failure. This paper presents a fault diagnosis system in a cyber-physical manufacturing cloud (CPMC) that allows manufacturers to perform diagnosis and maintenance of manufacturing machine tools through remote monitoring and online testing using Machine Tool Communication (MTComm). MTComm is an Internet scale communication method that enables both monitoring and operation of heterogeneous machine tools through RESTful web services over the Internet. It allows manufacturers to perform testing operations from cloud applications at both machine and component level for regular maintenance and fault diagnosis. This paper describes different components of the system and their functionalities in CPMC and techniques used for anomaly detection and remote online testing using MTComm. It also presents the development of a prototype of the proposed system in a CPMC testbed. Experiments were conducted to evaluate its performance to diagnose faults and test machine tools remotely during various manufacturing scenarios. The results demonstrated excellent feasibility to detect anomaly during manufacturing operations and perform testing operations remotely from cloud applications using MTComm.

Shahriar, M. R., Sunny, S. M. N. A., Liu, X., Leu, M. C., Hu, L., Nguyen, N..  2018.  MTComm Based Virtualization and Integration of Physical Machine Operations with Digital-Twins in Cyber-Physical Manufacturing Cloud. 2018 5th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2018 4th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :46—51.

Digital-Twins simulate physical world objects by creating 'as-is' virtual images in a cyberspace. In order to create a well synchronized digital-twin simulator in manufacturing, information and activities of a physical machine need to be virtualized. Many existing digital-twins stream read-only data of machine sensors and do not incorporate operations of manufacturing machines through Internet. In this paper, a new method of virtualization is proposed to integrate machining data and operations into the digital-twins using Internet scale machine tool communication method. A fully functional digital-twin is implemented in CPMC testbed using MTComm and several manufacturing application scenarios are developed to evaluate the proposed method and system. Performance analysis shows that it is capable of providing data-driven visual monitoring of a manufacturing process and performing manufacturing operations through digital twins over the Internet. Results of the experiments also shows that the MTComm based digital twins have an excellent efficiency.

Shaikh, F., Bou-Harb, E., Neshenko, N., Wright, A. P., Ghani, N..  2018.  Internet of Malicious Things: Correlating Active and Passive Measurements for Inferring and Characterizing Internet-Scale Unsolicited IoT Devices. IEEE Communications Magazine. 56:170—177.

Advancements in computing, communication, and sensing technologies are making it possible to embed, control, and gather vital information from tiny devices that are being deployed and utilized in practically every aspect of our modernized society. From smart home appliances to municipal water and electric industrial facilities to our everyday work environments, the next Internet frontier, dubbed IoT, is promising to revolutionize our lives and tackle some of our nations' most pressing challenges. While the seamless interconnection of IoT devices with the physical realm is envisioned to bring a plethora of critical improvements in many aspects and diverse domains, it will undoubtedly pave the way for attackers that will target and exploit such devices, threatening the integrity of their data and the reliability of critical infrastructure. Further, such compromised devices will undeniably be leveraged as the next generation of botnets, given their increased processing capabilities and abundant bandwidth. While several demonstrations exist in the literature describing the exploitation procedures of a number of IoT devices, the up-to-date inference, characterization, and analysis of unsolicited IoT devices that are currently deployed "in the wild" is still in its infancy. In this article, we address this imperative task by leveraging active and passive measurements to report on unsolicited Internet-scale IoT devices. This work describes a first step toward exploring the utilization of passive measurements in combination with the results of active measurements to shed light on the Internet-scale insecurities of the IoT paradigm. By correlating results of Internet-wide scanning with Internet background radiation traffic, we disclose close to 14,000 compromised IoT devices in diverse sectors, including critical infrastructure and smart home appliances. To this end, we also analyze their generated traffic to create effective mitigation signatures that could be deployed in local IoT realms. To support largescale empirical data analytics in the context of IoT, we make available the inferred and extracted IoT malicious raw data through an authenticated front-end service. The outcomes of this work confirm the existence of such compromised devices on an Internet scale, while the generated inferences and insights are postulated to be employed for inferring other similarly compromised IoT devices, in addition to contributing to IoT cyber security situational awareness.

Sun, P., Yin, S., Man, W., Tao, T..  2018.  Research of Personalized Recommendation Algorithm Based on Trust and User's Interest. 2018 International Conference on Robots Intelligent System (ICRIS). :153—156.

Most traditional recommendation algorithms only consider the binary relationship between users and projects, these can basically be converted into score prediction problems. But most of these algorithms ignore the users's interests, potential work factors or the other social factors of the recommending products. In this paper, based on the existing trustworthyness model and similarity measure, we puts forward the concept of trust similarity and design a joint interest-content recommendation framework to suggest users which videos to watch in the online video site. In this framework, we first analyze the user's viewing history records, tags and establish the user's interest characteristic vector. Then, based on the updated vector, users should be clustered by sparse subspace clust algorithm, which can improve the efficiency of the algorithm. We certainly improve the calculation of similarity to help users find better neighbors. Finally we conduct experiments using real traces from Tencent Weibo and Youku to verify our method and evaluate its performance. The results demonstrate the effectiveness of our approach and show that our approach can substantially improve the recommendation accuracy.

Byrne, K., Marín, C..  2018.  Human Trust in Robots When Performing a Service. 2018 IEEE 27th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE). :9—14.

The presence of robots is becoming more apparent as technology progresses and the market focus transitions from smart phones to robotic personal assistants such as those provided by Amazon and Google. The integration of robots in our societies is an inevitable tendency in which robots in many forms and with many functionalities will provide services to humans. This calls for an understanding of how humans are affected by both the presence of and the reliance on robots to perform services for them. In this paper we explore the effects that robots have on humans when a service is performed on request. We expose three groups of human participants to three levels of service completion performed by robots. We record and analyse human perceptions such as propensity to trust, competency, responsiveness, sociability, and team work ability. Our results demonstrate that humans tend to trust robots and are more willing to interact with them when they autonomously recover from failure by requesting help from other robots to fulfil their service. This supports the view that autonomy and team working capabilities must be brought into robots in an effort to strengthen trust in robots performing a service.

Herse, S., Vitale, J., Tonkin, M., Ebrahimian, D., Ojha, S., Johnston, B., Judge, W., Williams, M..  2018.  Do You Trust Me, Blindly? Factors Influencing Trust Towards a Robot Recommender System 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). :7—14.

When robots and human users collaborate, trust is essential for user acceptance and engagement. In this paper, we investigated two factors thought to influence user trust towards a robot: preference elicitation (a combination of user involvement and explanation) and embodiment. We set our experiment in the application domain of a restaurant recommender system, assessing trust via user decision making and perceived source credibility. Previous research in this area uses simulated environments and recommender systems that present the user with the best choice from a pool of options. This experiment builds on past work in two ways: first, we strengthened the ecological validity of our experimental paradigm by incorporating perceived risk during decision making; and second, we used a system that recommends a nonoptimal choice to the user. While no effect of embodiment is found for trust, the inclusion of preference elicitation features significantly increases user trust towards the robot recommender system. These findings have implications for marketing and health promotion in relation to Human-Robot Interaction and call for further investigation into the development and maintenance of trust between robot and user.

2020-11-23
Li, W., Zhu, H., Zhou, X., Shimizu, S., Xin, M., Jin, Q..  2018.  A Novel Personalized Recommendation Algorithm Based on Trust Relevancy Degree. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :418–422.
The rapid development of the Internet and ecommerce has brought a lot of convenience to people's life. Personalized recommendation technology provides users with services that they may be interested according to users' information such as personal characteristics and historical behaviors. The research of personalized recommendation has been a hot point of data mining and social networks. In this paper, we focus on resolving the problem of data sparsity based on users' rating data and social network information, introduce a set of new measures for social trust and propose a novel personalized recommendation algorithm based on matrix factorization combining trust relevancy. Our experiments were performed on the Dianping datasets. The results show that our algorithm outperforms traditional approaches in terms of accuracy and stability.
Sutton, A., Samavi, R., Doyle, T. E., Koff, D..  2018.  Digitized Trust in Human-in-the-Loop Health Research. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1–10.
In this paper, we propose an architecture that utilizes blockchain technology for enabling verifiable trust in collaborative health research environments. The architecture supports the human-in-the-loop paradigm for health research by establishing trust between participants, including human researchers and AI systems, by making all data transformations transparent and verifiable by all participants. We define the trustworthiness of the system and provide an analysis of the architecture in terms of trust requirements. We then evaluate our architecture by analyzing its resiliency to common security threats and through an experimental realization.