Biblio
Botnet has been evolving over time since its birth. Nowadays, P2P (Peer-to-Peer) botnet has become a main threat to cyberspace security, owing to its strong concealment and easy expansibility. In order to effectively detect P2P botnet, researchers often focus on the analysis of network traffic. For the sake of enriching P2P botnet detection methods, the author puts forward a new sight of applying distributed threat intelligence sharing system to P2P botnet detection. This system aims to fight against distributed botnet by using distributed methods itself, and then to detect botnet in real time. To fulfill the goal of botnet detection, there are 3 important parts: the threat intelligence sharing and evaluating system, the BAV quantitative TI model, and the AHP and HMM based analysis algorithm. Theoretically, this method should work on different types of distributed cyber threat besides P2P botnet.
Data Distribution Service (DDS) is a realtime peer-to-peer protocol that serves as a scalable middleware between distributed networked systems found in many Industrial IoT domains such as automotive, medical, energy, and defense. Since the initial ratification of the standard, specifications have introduced a Security Model and Service Plugin Interface (SPI) architecture, facilitating authenticated encryption and data centric access control while preserving interoperable data exchange. However, as Secure DDS v1.1, the default plugin specifications presently exchanges digitally signed capability lists of both participants in the clear during the crypto handshake for permission attestation; thus breaching confidentiality of the context of the connection. In this work, we present an attacker model that makes use of network reconnaissance afforded by this leaked context in conjunction with formal verification and model checking to arbitrarily reason about the underlying topology and reachability of information flow, enabling targeted attacks such as selective denial of service, adversarial partitioning of the data bus, or vulnerability excavation of vendor implementations.
This article is devoted to the development of a platform for reliable storage of information on supplies based on blockchain technology. The article discusses the main approaches to the work of decentralized applications, as well as the main problems.
Blockchain networks which employ Proof-of-Work in their consensus mechanism may face inconsistencies in the form of forks. These forks are usually resolved through the application of block selection rules (such as the Nakamoto consensus). In this paper, we investigate the cause and length of forks for the Bitcoin network. We develop theoretical formulas which model the Bitcoin consensus and network protocols, based on an Erdös-Rényi random graph construction of the overlay network of peers. Our theoretical model addresses the effect of key parameters on the fork occurrence probability, such as block propagation delay, network bandwidth, and block size. We also leverage this model to estimate the weight of fork branches. Our model is implemented using the network simulator OMNET++ and validated by historical Bitcoin data. We show that under current conditions, Bitcoin will not benefit from increasing the number of connections per node.
Delivery service via ridesharing is a promising service to share travel costs and improve vehicle occupancy. Existing ridesharing systems require participating vehicles to periodically report individual private information (e.g., identity and location) to a central controller, which is a potential central point of failure, resulting in possible data leakage or tampering in case of controller break down or under attack. In this paper, we propose a Blockchain secured ridesharing delivery system, where the immutability and distributed architecture of the Blockchain can effectively prevent data tampering. However, such tamper-resistance property comes at the cost of a long confirmation delay caused by the consensus process. A Hash-oriented Practical Byzantine Fault Tolerance (PBFT) based consensus algorithm is proposed to improve the Blockchain efficiency and reduce the transaction confirmation delay from 10 minutes to 15 seconds. The Hash-oriented PBFT effectively avoids the double-spending attack and Sybil attack. Security analysis and simulation results demonstrate that the proposed Blockchain secured ridesharing delivery system offers strong security guarantees and satisfies the quality of delivery service in terms of confirmation delay and transaction throughput.
Traditional firewalls, Intrusion Detection Systems(IDS) and network analytics tools extensively use the `flow' connection concept, consisting of five `tuples' of source and destination IP, ports and protocol type, for classification and management of network activities. By analysing flows, information can be obtained from TCP/IP fields and packet content to give an understanding of what is being transferred within a single connection. As networks have evolved to incorporate more connections and greater bandwidth, particularly from ``always on'' IoT devices and video and data streaming, so too have malicious network threats, whose communication methods have increased in sophistication. As a result, the concept of the 5 tuple flow in isolation is unable to detect such threats and malicious behaviours. This is due to factors such as the length of time and data required to understand the network traffic behaviour, which cannot be accomplished by observing a single connection. To alleviate this issue, this paper proposes the use of additional, two tuple and single tuple flow types to associate multiple 5 tuple communications, with generated metadata used to profile individual connnection behaviour. This proposed approach enables advanced linking of different connections and behaviours, developing a clearer picture as to what network activities have been taking place over a prolonged period of time. To demonstrate the capability of this approach, an expert system rule set has been developed to detect the presence of a multi-peered ZeuS botnet, which communicates by making multiple connections with multiple hosts, thus undetectable to standard IDS systems observing 5 tuple flow types in isolation. Finally, as the solution is rule based, this implementation operates in realtime and does not require post-processing and analytics of other research solutions. This paper aims to demonstrate possible applications for next generation firewalls and methods to acquire additional information from network traffic.
The Internet of things (IoT) has experienced rapid development these years, while its security and privacy remains a major challenge. One of the main security goals for the IoT is to build secure and authenticated channels between IoT nodes. A common way widely used to achieve this goal is using authenticated key exchange protocol. However, with the increasing progress of quantum computation, most authenticated key exchange protocols nowadays are threatened by the rise of quantum computers. In this study, we address this problem by using ring-SIS based KEM and hash function to construct an authenticated key exchange scheme so that we base the scheme on lattice based hard problems believed to be secure even with quantum attacks. We also prove the security of universal composability of our scheme. The scheme hence can keep security while runs in complicated environment.
Peer to Peer (P2P) is a dynamic and self-organized technology, popularly used in File sharing applications to achieve better performance and avoids single point of failure. The popularity of this network has attracted many attackers framing different attacks including Sybil attack, Routing Table Insertion attack (RTI) and Free Riding. Many mitigation methods are also proposed to defend or reduce the impact of such attacks. However, most of those approaches are protocol specific. In this work, we propose a Blockchain based security framework for P2P network to address such security issues. which can be tailored to any P2P file-sharing system.
Underpinning the operation of Bitcoin is a peer-to-peer (P2P) network [1] that facilitates the execution of transactions by end users, as well as the transaction confirmation process known as bitcoin mining. The security of this P2P network is vital for the currency to function and subversion of the underlying network can lead to attacks on bitcoin users including theft of bitcoins, manipulation of the mining process and denial of service (DoS). As part of this paper the network protocol and bitcoin core software are analysed, with three bitcoin message exchanges (the connection handshake, GETHEADERS/HEADERS and MEMPOOL/INV) found to be potentially vulnerable to spoofing and use in distributed denial of service (DDoS) attacks. Possible solutions to the identified weaknesses and vulnerabilities are evaluated, such as the introduction of random nonces into network messages exchanges.
Peer-to-Peer botnets have become one of the significant threat against network security due to their distributed properties. The decentralized nature makes their detection challenging. It is important to take measures to detect bots as soon as possible to minimize their harm. In this paper, we propose PeerGrep, a novel system capable of identifying P2P bots. PeerGrep starts from identifying hosts that are likely engaged in P2P communications, and then distinguishes P2P bots from P2P hosts by analyzing their active ratio, packet size and the periodicity of connection to destination IP addresses. The evaluation shows that PeerGrep can identify all P2P bots with quite low FPR even if the malicious P2P application and benign P2P application coexist within the same host or there is only one bot in the monitored network.
The underlying or core technology of Bitcoin cryptocurrency has become a blessing for human being in this era. Everything is gradually changing to digitization in this today's epoch. Bitcoin creates virtual money using Blockchain that's become popular over the world. Blockchain is a shared public ledger, and it includes all transactions which are confirmed. It is almost impossible to crack the hidden information in the blocks of the Blockchain. However, there are certain security and technical challenges like scalability, privacy leakage, selfish mining, etc. which hampers the wide application of Blockchain. In this paper, we briefly discuss this emerging technology namely Blockchain. In addition, we extrapolate in-depth insight on Blockchain technology.
Peer-to-peer computing (P2P) refers to the famous technology that provides peers an equal spontaneous collaboration in the network by using appropriate information and communication systems without the need for a central server coordination. Today, the interconnection of several P2P networks has become a genuine solution for increasing system reliability, fault tolerance and resource availability. However, the existence of security threats in such networks, allows us to investigate the safety of users from P2P threats by studying the effects of competition between these interconnected networks. In this paper, we present an e-epidemic model to characterize the worm propagation in an interconnected peer-to-peer network. Here, we address this issue by introducing a model of network competition where an unprotected network is willing to partially weaken its own safety in order to more severely damage a more protected network. The unprotected network can infect all peers in the competitive networks after their non react against the passive worm propagation. Our model also evaluated the effect of an immunization strategies adopted by the protected network to resist against attacking networks. The launch time of immunization strategies in the protected network, the number of peers synapse connected to the both networks, and other effective parameters have also been investigated in this paper.