Visible to the public Biblio

Found 7504 results

Filters: Keyword is Metrics  [Clear All Filters]
2017-12-27
Pich, R., Chivapreecha, S., Prabnasak, J..  2017.  A new key generator for data encryption using chaos in digital filter. 2017 IEEE 8th Control and System Graduate Research Colloquium (ICSGRC). :87–92.

The presented work of this paper is to propose the implementation of chaotic crypto-system with the new key generator using chaos in digital filter for data encryption and decryption. The chaos in digital filter of the second order system is produced by the coefficients which are initialed in the key generator to produce other new coefficients. Private key system using the initial coefficients value condition and dynamic input as password of 16 characters is to generate the coefficients for crypto-system. In addition, we have tension specifically to propose the solution of data security in lightweight cryptography based on external and internal key in which conducts with the appropriate key sensitivity plus high performance. The chaos in digital filter has functioned as the main major in the system. The experimental results illustrate that the proposed data encryption with new key generator system is the high sensitive system with accuracy key test 99% and can make data more secure with high performance.

Kar, N., Aman, M. A. A. A., Mandal, K., Bhattacharya, B..  2017.  Chaos-based video steganography. 2017 8th International Conference on Information Technology (ICIT). :482–487.

In this paper a novel data hiding method has been proposed which is based on Non-Linear Feedback Shift Register and Tinkerbell 2D chaotic map. So far, the major work in Steganography using chaotic map has been confined to image steganography where significant restrictions are there to increase payload. In our work, 2D chaotic map and NLFSR are used to developed a video steganography mechanism where data will be embedded in the segregated frames. This will increase the data hiding limit exponentially. Also, embedding position of each frame will be different from others frames which will increase the overall security of the proposed mechanism. We have achieved this randomized data hiding points by using a chaotic map. Basically, Chaotic theory which is non-linear dynamics physics is using in this era in the field of Cryptography and Steganography and because of this theory, little bit changes in initial condition makes the output totally different. So, it is very hard to get embedding position of data without knowing the initial value of the chaotic map.

Tutueva, A. V., Butusov, D. N., Pesterev, D. O., Belkin, D. A., Ryzhov, N. G..  2017.  Novel normalization technique for chaotic Pseudo-random number generators based on semi-implicit ODE solvers. 2017 International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT QM IS). :292–295.

The paper considers the general structure of Pseudo-random binary sequence generator based on the numerical solution of chaotic differential equations. The proposed generator architecture divides the generation process in two stages: numerical simulation of the chaotic system and converting the resulting sequence to a binary form. The new method of calculation of normalization factor is applied to the conversion of state variables values to the binary sequence. Numerical solution of chaotic ODEs is implemented using semi-implicit symmetric composition D-method. Experimental study considers Thomas and Rössler attractors as test chaotic systems. Properties verification for the output sequences of generators is carried out using correlation analysis methods and NIST statistical test suite. It is shown that output sequences of investigated generators have statistical and correlation characteristics that are specific for the random sequences. The obtained results can be used in cryptography applications as well as in secure communication systems design.

Gençoğlu, M. T..  2017.  Mathematical cryptanalysis of \#x201C;personalized information encryption using ECG signals with chaotic functions \#x201D;. 2017 International Conference on Computer Science and Engineering (UBMK). :878–881.

The chaotic system and cryptography have some common features. Due to the close relationship between chaotic system and cryptosystem, researchers try to combine the chaotic system with cryptosystem. In this study, security analysis of an encryption algorithm which aims to encrypt the data with ECG signals and chaotic functions was performed using the Logistic map in text encryption and Henon map in image encryption. In the proposed algorithm, text and image data can be encrypted at the same time. In addition, ECG signals are used to determine the initial conditions and control parameters of the chaotic functions used in the algorithm to personalize of the encryption algorithm. In this cryptanalysis study, the inadequacy of the mentioned process and the weaknesses of the proposed method have been determined. Encryption algorithm has not sufficient capacity to provide necessary security level of key space and secret key can be obtained with only one plaintext/ciphertext pair with chosen-plaintext attack.

Ye, Z., Yin, H., Ye, Y..  2017.  Information security analysis of deterministic encryption and chaotic encryption in spatial domain and frequency domain. 2017 14th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). :1–6.

Information security is crucial to data storage and transmission, which is necessary to protect information under various hostile environments. Cryptography serves as a major element to ensure confidentiality in both communication and information technology, where the encryption and decryption schemes are implemented to scramble the pure plaintext and descramble the secret ciphertext using security keys. There are two dominating types of encryption schemes: deterministic encryption and chaotic encryption. Encryption and decryption can be conducted in either spatial domain or frequency domain. To ensure secure transmission of digital information, comparisons on merits and drawbacks of two practical encryption schemes are conducted, where case studies on the true color digital image encryption are presented. Both deterministic encryption in spatial domain and chaotic encryption in frequency domain are analyzed in context, as well as the information integrity after decryption.

Liu, S..  2017.  Research on the design and implementation of two dimensional hyper chaotic sequence cipher algorithm. 2017 Sixth International Conference on Future Generation Communication Technologies (FGCT). :1–4.

In the information age of today, with the rapid development and wide application of communication technology and network technology, more and more information has been transmitted through the network and information security and protection is becoming more and more important, the cryptography theory and technology have become an important research field in Information Science and technology. In recent years, many researchers have found that there is a close relationship between chaos and cryptography. Chaotic system to initial conditions is extremely sensitive and can produce a large number of with good cryptographic properties of class randomness, correlation, complexity and wide spectrum sequence, provides a new and effective means for data encryption. But chaotic cryptography, as a new cross discipline, is still in its initial stage of development. Although many chaotic encryption schemes have been proposed, the method of chaotic cryptography is not yet fully mature. The research is carried out under such a background, to be used in chaotic map of the chaotic cipher system, chaotic sequence cipher, used for key generation of chaotic random number generators and other key problems is discussed. For one-dimensional chaotic encryption algorithm, key space small, security is not higher defect, this paper selects logistic mapping coupled to generate twodimensional hyper chaotic system as the research object, the research focus on the hyper chaotic sequence in the application of data encryption, in chaotic data encryption algorithm to make some beneficial attempts, at the same time, the research on applications of chaos in data encryption to do some exploring.

Wang, Y., Kang, S., Lan, C., Liang, Y., Zhu, J., Gao, H..  2016.  A five-dimensional chaotic system with a large parameter range and the circuit implementation of a time-switched system. 2016 11th International Conference on Reliability, Maintainability and Safety (ICRMS). :1–6.

To enhance the encryption and anti-translation capability of the information, we constructed a five-dimensional chaotic system. Combined with the Lü system, a time-switched system with multiple chaotic attractors is realized in the form of a digital circuit. Some characteristics of the five-dimensional system are analyzed, such as Poincare mapping, the Lyapunov exponent spectrum, and bifurcation diagram. The analysis shows that the system exhibits chaotic characteristics for a wide range of parameter values. We constructed a time-switched expression between multiple chaotic attractors using the communication between a microcontroller unit (MCU) and field programmable gate array (FPGA). The system can quickly switch between different chaotic attractors within the chaotic system and between chaotic systems at any time, leading to signal sources with more variability, diversity, and complexity for chaotic encryption.

Guo, L., Chen, J., Li, J..  2016.  Chaos-Based color image encryption and compression scheme using DNA complementary rule and Chinese remainder theorem. 2016 13th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :208–212.

In this paper, we propose a new color image encryption and compression algorithm based on the DNA complementary rule and the Chinese remainder theorem, which combines the DNA complementary rule with quantum chaotic map. We use quantum chaotic map and DNA complementary rule to shuffle the color image and obtain the shuffled image, then Chinese remainder theorem from number theory is utilized to diffuse and compress the shuffled image simultaneously. The security analysis and experiment results show that the proposed encryption algorithm has large key space and good encryption result, it also can resist against common attacks.

Jallouli, O., Abutaha, M., Assad, S. E., Chetto, M., Queudet, A., Deforges, O..  2016.  Comparative study of two pseudo chaotic number generators for securing the IoT. 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :1340–1344.

The extremely rapid development of the Internet of Things brings growing attention to the information security issue. Realization of cryptographically strong pseudo random number generators (PRNGs), is crucial in securing sensitive data. They play an important role in cryptography and in network security applications. In this paper, we realize a comparative study of two pseudo chaotic number generators (PCNGs). The First pseudo chaotic number generator (PCNG1) is based on two nonlinear recursive filters of order one using a Skew Tent map (STmap) and a Piece-Wise Linear Chaotic map (PWLCmap) as non linear functions. The second pseudo chaotic number generator (PCNG2) consists of four coupled chaotic maps, namely: PWLCmaps, STmap, Logistic map by means a binary diffusion matrix [D]. A comparative analysis of the performance in terms of computation time (Generation time, Bit rate and Number of needed cycles to generate one byte) and security of the two PCNGs is carried out.

Kotel, S., Sbiaa, F., Zeghid, M., Machhout, M., Baganne, A., Tourki, R..  2016.  Efficient Hybrid Encryption System Based on Block Cipher and Chaos Generator. 2016 IEEE International Conference on Computer and Information Technology (CIT). :375–382.

In recent years, more and more multimedia data are generated and transmitted in various fields. So, many encryption methods for multimedia content have been put forward to satisfy various applications. However, there are still some open issues. Each encryption method has its advantages and drawbacks. Our main goal is expected to provide a solution for multimedia encryption which satisfies the target application constraints and performs metrics of the encryption algorithm. The Advanced Encryption Standard (AES) is the most popular algorithm used in symmetric key cryptography. Furthermore, chaotic encryption is a new research direction of cryptography which is characterized by high initial-value sensitivity and good randomness. In this paper we propose a hybrid video cryptosystem which combines two encryption techniques. The proposed cryptosystem realizes the video encryption through the chaos and AES in CTR mode. Experimental results and security analysis demonstrate that this cryptosystem is highly efficient and a robust system for video encryption.

T, Baby H., R, Sujatha B..  2016.  Chaos based Combined Multiple Recursive KEY Generator for Crypto-Systems. 2016 2nd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT). :411–415.

With the ever increasing growth of internet usage, ensuring high security for information has gained great importance, due to the several threats in the communication channels. Hence there is continuous research towards finding a suitable approach to ensure high security for the information. In recent decades, cryptography is being used extensively for providing security on the Internet although primarily used in the military and diplomatic communities. One such approach is the application of Chaos theory in cryptosystems. In this work, we have proposed the usage of combined multiple recursive generator (CMRG) for KEY generation based on a chaotic function to generate different multiple keys. It is seen that negligible difference in parameters of chaotic function generates completely different keys as well as cipher text. The main motive for developing the chaos based cryptosystem is to attain encryption that provides high security at comparatively higher speed but with lower complexity and cost over the conventional encryption algorithms.

Caifen, W., Burong, K..  2016.  ID-Based Signcryption Scheme Using Extended Chaotic Maps. 2016 International Symposium on Computer, Consumer and Control (IS3C). :776–779.

Recently, the chaotic public-key cryptography attracts much attention of researchers, due to the great characters of chaotic maps. With the security superiorities and computation efficiencies of chaotic map over other cryptosystems, in this paper, a novel Identity-based signcryption scheme is proposed using extended chaotic maps. The difficulty of chaos-based discrete logarithm (CDL) problem lies the foundation of the security of proposed ECM-IBSC scheme.

Hassene, S., Eddine, M. N..  2016.  A new hybrid encryption technique permuting text and image based on hyperchaotic system. 2016 2nd International Conference on Advanced Technologies for Signal and Image Processing (ATSIP). :63–68.

This paper proposes a new hybrid technique for combined encryption text and image based on hyperchaos system. Since antiquity, man has continued looking for ways to send messages to his correspondents in order to communicate with them safely. It needed, through successive epochs, both physical and intellectual efforts in order to find an effective and appropriate communication technique. On another note, there is a behavior between the rigid regularity and randomness. This behavior is called chaos. In fact, it is a new field of investigation that is opened along with a new understanding of the frequently misunderstood long effects. The chaotic cryptography is thus born by inclusion of chaos in encryption algorithms. This article is in this particular context. Its objective is to create and implement an encryption algorithm based on a hyperchaotic system. This algorithm is composed of four methods: two for encrypting images and two for encrypting texts. The user chose the type of the input of the encryption (image or text) and as well as of the output. This new algorithm is considered a renovation in the science of cryptology, with the hybrid methods. This research opened a new features.

Aromataris, G., Annovazzi-Lodi, V..  2016.  Two- and three-laser chaos communications. 18th Italian National Conference on Photonic Technologies (Fotonica 2016). :1–4.

After a brief introduction on optical chaotic cryptography, we compare the standard short cavity, close-loop, two-laser and three-laser schemes for secure transmission, showing that both are suitable for secure data exchange, the three-laser scheme offering a slightly better level of privacy, due to its symmetrical topology.

Kharel, R., Raza, U., Ijaz, M., Ekpo, S., Busawon, K..  2016.  Chaotic secure digital communication scheme using auxiliary systems. 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). :1–6.

In this paper, we present a new secure message transmission scheme using hyperchaotic discrete primary and auxiliary chaotic systems. The novelty lies on the use of auxiliary chaotic systems for the encryption purposes. We have used the modified Henon hyperchaotic discrete-time system. The use of the auxiliary system allows generating the same keystream in the transmitter and receiver side and the initial conditions in the auxiliary systems combined with other transmitter parameters suffice the role of the key. The use of auxiliary systems will mean that the information of keystream used in the encryption function will not be present on the transmitted signal available to the intruders, hence the reconstructing of the keystream will not be possible. The encrypted message is added on to the dynamics of the transmitter using inclusion technique and the dynamical left inversion technique is employed to retrieve the unknown message. The simulation results confirm the robustness of the method used and some comments are made about the key space from the cryptographic viewpoint.

Sun, X., Liu, H., Zhang, M..  2016.  Multivariate symmetric cryptography with 2-dimesion chaotic disturbation. 2016 8th International Conference on Wireless Communications Signal Processing (WCSP). :1–4.

Multivariate public key cryptosystem acts as a signature system rather than encryption system due to the minus mode used in system. A multivariate encryption system with determinate equations in central map and chaotic shell protection for central map and affine map is proposed in this paper. The outputs of two-dimension chaotic system are discretized on a finite field to disturb the central map and affine map in multivariate cryptosystem. The determined equations meet the shortage of indeterminate equations in minus mode and make the general attack methods are out of tenable condition. The analysis shows the proposed multivariate symmetric encryption system based on chaotic shell is able to resist general attacks.

2017-12-20
Mishra, S. K., Patel, A..  2017.  Wells turbine modeling and PI control scheme for OWC plant using Xilinx system generator. 2017 4th International Conference on Power, Control Embedded Systems (ICPCES). :1–6.

This paper develops a model for Wells turbine using Xilinx system generator (XSG)toolbox of Matlab. The Wells turbine is very popular in oscillating water column (OWC) wave energy converters. Mostly, the turbine behavior is emulated in a controlled DC or AC motor coupled with a generator. Therefore, it is required to model the OWC and Wells turbine in real time software like XSG. It generates the OWC turbine behavior in real time. Next, a PI control scheme is suggested for controlling the DC motor so as to emulate the Wells turbine efficiently. The overall performance of the system is tested with asquirrel cage induction generator (SCIG). The Pierson-Moskowitz and JONSWAP irregular wave models have been applied to validate the OWC model. Finally, the simulation results for Wells turbine and PI controller have beendiscussed.

Chang, L., Kao, M., Tsai, L., Liang, J., Lee, S..  2017.  Frequency modulation spin waves generator via oscillating vortex core in NiFe disk array. 2017 IEEE International Magnetics Conference (INTERMAG). :1–1.

The study of spin waves (SW) excitation in magnetic devices is one of the most important topics in modern magnetism due to the applications of the information carrier and the signal processing. We experimentally realize a spin-wave generator, capable of frequency modulation, in a magnonic waveguide. The emission of spin waves was produced by the reversal or oscillation of nanoscale magnetic vortex cores in a NiFe disk array. The vortex cores in the disk array were excited by an out of plane radio frequency (rf) magnetic field. The dynamic behaviors of the magnetization of NiFe were studied using a micro-focused Brillouin light scattering spectroscopy (BLS) setup.

Adiyatullin, A. F., Anderson, M. D., Flayac, H., Portella-Oberli, M. T., Jabeen, F., Ouellet-Plamondon, C., Sallen, G. C., Deveaud, B..  2017.  Periodic squeezing in a polariton Josephson junction. 2017 Conference on Lasers and Electro-Optics Europe European Quantum Electronics Conference (CLEO/Europe-EQEC). :1–1.

Microcavity polaritons are a hybrid photonic system that arises from the strong coupling of confined photons to quantum-well excitons. Due to their light-matter nature, polaritons possess a Kerr-like nonlinearity while being easily accessible by standard optical means. The ability to engineer confinement potentials in microcavities makes polaritons a very convenient system to study spatially localized bosonic populations, which might have great potential for the creation of novel photonic devices. Careful engineering of this system is predicted to induce Gaussian squeezing, a phenomenon that lies at a heart of the so-called unconventional photon blockade associated with single photon emission. This paper reveals a manifestation of the predicted squeezing by measuring the ultrafast time-dependent second-order correlation function g(2)(0) by means of a streak-camera acting as a single photon detector. The light emitted by the microcavity oscillates between Poissonian and super-Poissonian in phase with the Josephson dynamics. This behavior is remarkably well explained by quantum simulations, which predict such dynamical evolution of the squeezing parameters. The paper shows that a crucial prerequisite for squeezing is presence of a weak, but non-zero nonlinearity. Results open the way towards generation of nonclassical light in solid-state systems possessing a single particle nonlinearity like microwave Josephson junctions or silicon-on-chip resonators.

Fang, Y., Dickerson, S. J..  2017.  Achieving Swarm Intelligence with Spiking Neural Oscillators. 2017 IEEE International Conference on Rebooting Computing (ICRC). :1–4.

Mimicking the collaborative behavior of biological swarms, such as bird flocks and ant colonies, Swarm Intelligence algorithms provide efficient solutions for various optimization problems. On the other hand, a computational model of the human brain, spiking neural networks, has been showing great promise in recognition, inference, and learning, due to recent emergence of neuromorphic hardware for high-efficient and low-power computing. Through bridging these two distinct research fields, we propose a novel computing paradigm that implements the swarm intelligence with a population of coupled spiking neural oscillators in basic leaky integrate-and-fire (LIF) model. Our model behaves as a meta-heuristic searching conducted by multiple collaborative agents. In this design, the oscillating neurons serve as agents in the swarm, search for solutions in frequency coding and communicate with each other through spikes. The firing rate of each agent is adaptive to other agents with better solutions and the optimal solution is rendered as the swarm synchronization is reached. We apply the proposed method to the parameter optimization in several test objective functions and demonstrate its effectiveness and efficiency. Our new computing paradigm expands the computational power of coupled spiking neurons in the field of solving optimization problem and brings opportunities for the connection between individual intelligence and swarm intelligence.

Raiola, P., Erb, D., Reddy, S. M., Becker, B..  2017.  Accurate Diagnosis of Interconnect Open Defects Based on the Robust Enhanced Aggressor Victim Model. 2017 30th International Conference on VLSI Design and 2017 16th International Conference on Embedded Systems (VLSID). :135–140.

Interconnect opens are known to be one of the predominant defects in nanoscale technologies. Automatic test pattern generation for open faults is challenging, because of their rather unstable behavior and the numerous electrical parameters which need to be considered. Thus, most approaches try to avoid accurate modeling of all constraints like the influence of the aggressors on the open net and use simplified fault models in order to detect as many faults as possible or make assumptions which decrease both complexity and accuracy. Yet, this leads to the problem that not only generated tests may be invalidated but also the localization of a specific fault may fail - in case such a model is used as basis for diagnosis. Furthermore, most of the models do not consider the problem of oscillating behavior, caused by feedback introduced by coupling capacitances, which occurs in almost all designs. In [1], the Robust Enhanced Aggressor Victim Model (REAV) and in [2] an extension to address the problem of oscillating behavior were introduced. The resulting model does not only consider the influence of all aggressors accurately but also guarantees robustness against oscillating behavior as well as process variations affecting the thresholds of gates driven by an open interconnect. In this work we present the first diagnostic classification algorithm for this model. This algorithm considers all constraints enforced by the REAV model accurately - and hence handles unknown values as well as oscillating behavior. In addition, it allows to distinguish faults at the same interconnect and thus reducing the area that has to be considered for physical failure analysis. Experimental results show the high efficiency of the new method handling circuits with up to 500,000 non-equivalent faults and considerably increasing the diagnostic resolution.

Auerbach, E., Leder, N., Gider, S., Suess, D., Arthaber, H..  2017.  Characterization of dynamic nonlinear effects in MTJ-based magnetic sensors. 2017 Integrated Nonlinear Microwave and Millimetre-wave Circuits Workshop (INMMiC). :1–3.

The MgO-based magnetic tunnel junction (MTJ) is the basis of modern hard disk drives' magnetic read sensors. Within its operating bandwidth, the sensor's performance is significantly affected by nonlinear and oscillating behavior arising from the MTJ's magnetization dynamics at microwave frequencies. Static I-V curve measurements are commonly used to characterize sensor's nonlinear effects. Unfortunately, these do not sufficiently capture the MTJ's magnetization dynamics. In this paper, we demonstrate the use of the two-tone measurement technique for full treatment of the sensor's nonlinear effects in conjunction with dynamic ones. This approach is new in the field of magnetism and magnetic materials, and it has its challenges due to the nature of the device. Nevertheless, the experimental results demonstrate how the two-tone measurement technique can be used to characterize magnetic sensor nonlinear properties.

Matsuzaki, H., Osaki, T., Kawaguchi, K., Takagi, S., Ichiyanagi, M., Unga, J., Suzuki, R., Maruyama, K., Azuma, T..  2017.  Behavior of the oscillating microbubble clusters trapped in focused ultrasound field. 2017 IEEE International Ultrasonics Symposium (IUS). :1–4.

Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few ({\textbackslash}textless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- {\textbackslash}textbar{\textbackslash}textbar

Ulz, T., Pieber, T., Steger, C., Haas, S., Matischek, R., Bock, H..  2017.  Hardware-Secured Configuration and Two-Layer Attestation Architecture for Smart Sensors. 2017 Euromicro Conference on Digital System Design (DSD). :229–236.
Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few (\textbackslashtextless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- \textbackslashtextbar\textbackslashtextbar
Lee, W. H., Lee, R. B..  2017.  Implicit Smartphone User Authentication with Sensors and Contextual Machine Learning. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :297–308.

Authentication of smartphone users is important because a lot of sensitive data is stored in the smartphone and the smartphone is also used to access various cloud data and services. However, smartphones are easily stolen or co-opted by an attacker. Beyond the initial login, it is highly desirable to re-authenticate end-users who are continuing to access security-critical services and data. Hence, this paper proposes a novel authentication system for implicit, continuous authentication of the smartphone user based on behavioral characteristics, by leveraging the sensors already ubiquitously built into smartphones. We propose novel context-based authentication models to differentiate the legitimate smartphone owner versus other users. We systematically show how to achieve high authentication accuracy with different design alternatives in sensor and feature selection, machine learning techniques, context detection and multiple devices. Our system can achieve excellent authentication performance with 98.1% accuracy with negligible system overhead and less than 2.4% battery consumption.