Biblio
Mobile apps often collect and share personal data with untrustworthy third-party apps, which may lead to data misuse and privacy violations. Most of the collected data originates from sensors built into the mobile device, where some of the sensors are treated as sensitive by the mobile platform while others permit unconditional access. Examples of privacy-prone sensors are the microphone, camera and GPS system. Access to these sensors is always mediated by protected function calls. On the other hand, the light sensor, accelerometer and gyroscope are considered innocuous. All apps have unrestricted access to their data. Unfortunately, this gap is not always justified. State-of-the-art privacy mechanisms on Android provide inadequate access control and do not address the vulnerabilities that arise due to unmediated access to so-called innocuous sensors on smartphones. We have developed techniques to demonstrate these threats. As part of our demonstration, we illustrate possible attacks using the innocuous sensors on the phone. As a solution, we present ipShield, a framework that provides users with greater control over their resources at runtime so as to protect against such attacks. We have implemented ipShield by modifying the AOSP.
In this work we present a study that evaluates and compares two block ciphers, AES and PRESENT, in the context of lightweight cryptography for smartphones security applications. To the best of our knowledge, this is the first comparison between these ciphers using a smartphone as computing platform. AES is the standard for symmetric encryption and PRESENT is one of the first ultra-lightweight ciphers proposed in the literature and included in the ISO/IEC 29192-2. In our study, we consider execution time, voltage consumption and memory usage as metrics for comparison purposes. The two block ciphers were evaluated through several experiments in a low-cost smartphone using Android built in tools. From the results we conclude that, for general purpose encryption AES performs statistically better although block-to-block PRESENT delivers better results.
This paper presents an approach to a closed-class authorship attribution (AA) problem. It is based on language modeling for classification and called modified language modeling. Modified language modeling aims to offer a solution for AA problem by Combinations of both bigram words weighting and Unigram words weighting. It makes the relation between unseen text and training documents clearer with giving extra reward of training documents; training document including bigram word as well as unigram words. Moreover, IDF value multiplied by related word probability has been used, instead of removing stop words which are provided by Stop words list. we evaluate Experimental results by four approaches; unigram, bigram, trigram and modified language modeling by using two Persian poem corpora as WMPR-AA2016-A Dataset and WMPR-AA2016-B Dataset. Results show that modified language modeling attributes authors better than other approaches. The result on WMPR-AA2016-B, which is bigger dataset, is much better than another dataset for all approaches. This may indicate that if adequate data is provided to train language modeling the modified language modeling can be a good solution to AA problem.
The Google Identity Platform is a system that allows a user to sign in to applications and other services by using a Google account. Google Sign-In is one such method for providing one’s identity to the Google Identity Platform. Google Sign-In is available for Android applications and iOS applications, as well as for websites and other devices. Users of Google Sign-In find that it integrates well with the Android platform, but iOS users (iPhone, iPad, etc.) do not have the same experience. The user experience when logging in to a Google account on an iOS application can not only be more tedious than the Android experience, but it also conditions users to engage in behaviors that put the information in their Google accounts at risk.
Searchable symmetric encryption (SSE) enables a client to store a database on an untrusted server while supporting keyword search in a secure manner. Despite the rapidly increasing interest in SSE technology, experiments indicate that the performance of the known schemes scales badly to large databases. Somewhat surprisingly, this is not due to their usage of cryptographic tools, but rather due to their poor locality (where locality is defined as the number of non-contiguous memory locations the server accesses with each query). The only known schemes that do not suffer from poor locality suffer either from an impractical space overhead or from an impractical read efficiency (where read efficiency is defined as the ratio between the number of bits the server reads with each query and the actual size of the answer). We construct the first SSE schemes that simultaneously enjoy optimal locality, optimal space overhead, and nearly-optimal read efficiency. Specifically, for a database of size N, under the modest assumption that no keyword appears in more than N1 − 1/loglogN documents, we construct a scheme with read efficiency Õ(loglogN). This essentially matches the lower bound of Cash and Tessaro (EUROCRYPT ’14) showing that any SSE scheme must be sub-optimal in either its locality, its space overhead, or its read efficiency. In addition, even without making any assumptions on the structure of the database, we construct a scheme with read efficiency Õ(logN). Our schemes are obtained via a two-dimensional generalization of the classic balanced allocations (“balls and bins”) problem that we put forward. We construct nearly-optimal two-dimensional balanced allocation schemes, and then combine their algorithmic structure with subtle cryptographic techniques.
Data persistence in emerging non-volatile memories (NVMs) poses a multitude of security vulnerabilities, motivating main memory encryption for data security. However, practical encryption algorithms demonstrate strong diffusion characteristics that increase cell flips, resulting in increased write energy/latency and reduced lifetime of NVMs. State-of-the-art security solutions have focused on reducing the encryption penalty (increased write energy/latency and reduced memory lifetime) in single-level cell (SLC) NVMs; however, the realization of low encryption penalty solutions for multi-/triple-level cell (MLC/TLC) secure NVMs remains an open area of research. This work synergistically integrates zero-based partial writes with XOR-based energy masking to realize Smartly EnCRypted Energy efficienT, i.e., SECRET MLC/TLC NVMs, without compromising the security of the underlying encryption technique. Our simulations on an MLC (TLC) resistive RAM (RRAM) architecture across SPEC CPU2006 workloads demonstrate that for 6.25% (7.84%) memory overhead, SECRET reduces write energy by 80% (63%), latency by 37% (49%), and improves memory lifetime by 63% (56%) over conventional advanced encryption standard-based (AES-based) counter mode encryption.
Encrypting Internet communications has been the subject of renewed focus in recent years. In order to add end-to-end encryption to legacy applications without losing the convenience of full-text search, ShadowCrypt and Mimesis Aegis use a new cryptographic technique called "efficiently deployable efficiently searchable encryption" (EDESE) that allows a standard full-text search system to perform searches on encrypted data. Compared to other recent techniques for searching on encrypted data, EDESE schemes leak a great deal of statistical information about the encrypted messages and the keywords they contain. Until now, the practical impact of this leakage has been difficult to quantify. In this paper, we show that the adversary's task of matching plaintext keywords to the opaque cryptographic identifiers used in EDESE can be reduced to the well-known combinatorial optimization problem of weighted graph matching (WGM). Using real email and chat data, we show how off-the-shelf WGM solvers can be used to accurately and efficiently recover hundreds of the most common plaintext keywords from a set of EDESE-encrypted messages. We show how to recover the tags from Bloom filters so that the WGM solver can be used with the set of encrypted messages that utilizes a Bloom filter to encode its search tags. We also show that the attack can be mitigated by carefully configuring Bloom filter parameters.
Recent literature on iOS security has focused on the malicious potential of third-party applications, demonstrating how developers can bypass application vetting and code-level protections. In addition to these protections, iOS uses a generic sandbox profile called "container" to confine malicious or exploited third-party applications. In this paper, we present the first systematic analysis of the iOS container sandbox profile. We propose the SandScout framework to extract, decompile, formally model, and analyze iOS sandbox profiles as logic-based programs. We use our Prolog-based queries to evaluate file-based security properties of the container sandbox profile for iOS 9.0.2 and discover seven classes of exploitable vulnerabilities. These attacks affect non-jailbroken devices running later versions of iOS. We are working with Apple to resolve these attacks, and we expect that SandScout will play a significant role in the development of sandbox profiles for future versions of iOS.
We give attacks on Feistel-based format-preserving encryption (FPE) schemes that succeed in message recovery (not merely distinguishing scheme outputs from random) when the message space is small. For \$4\$-bit messages, the attacks fully recover the target message using \$2textasciicircum1 examples for the FF3 NIST standard and \$2textasciicircum5 examples for the FF1 NIST standard. The examples include only three messages per tweak, which is what makes the attacks non-trivial even though the total number of examples exceeds the size of the domain. The attacks are rigorously analyzed in a new definitional framework of message-recovery security. The attacks are easily put out of reach by increasing the number of Feistel rounds in the standards.
iOS is well-known operating system which is strong in security. However, many attacking methods of iOS have recently been published which are called "Masque Attack", "Null Dereference" and "Italy Hacking Team's RCS". Therefore, security and safety is not suitable word to iOS. In addition, many security researchers have a problem to analyze iOS because the iOS is difficult to debug because of closed source. So, we propose a new security testing method for iOS. At first, we perform to fuzz iOS's web browser called MobileSafari. The MobileSafari is possible to express HTML, PDF and mp4, etc. We perform test abnormal HTML and PDF using our fuzzing method. We hope that our research can be helpful to iOS's security and safety.
Mobile applications - or apps - are one of the main reasons for the unprecedented success smart phones and tablets have experienced over the last decade. Apps are the main interfaces that users deal with when engaging in online banking, checking travel itineraries, or browsing their social network profiles while on the go. Previous research has studied various aspects of mobile application security including data leakage and privilege escalation through confused deputy attacks. However, the vast majority of mobile application research targets Google's Android platform. Few research papers analyze iOS applications and those that focus on the Apple environment perform their analysis on comparatively small datasets (i.e., thousands in iOS vs. hundreds of thousands in Android). As these smaller datasets call into question how representative the gained results are, we propose, implement, and evaluate CRiOS, a fully-automated system that allows us to amass comprehensive datasets of iOS applications which we subject to large-scale analysis. To advance academic research into the iOS platform and its apps, we plan on releasing CRiOS as an open source project. We also use CRiOS to aggregate a dataset of 43,404 iOS applications. Equipped with this dataset we analyze the collected apps to identify third-party libraries that are common among many applications. We also investigate the network communication endpoints referenced by the applications with respect to the endpoints' correct use of TLS/SSL certificates. In summary, we find that the average iOS application consists of 60.2% library classes and only 39.8% developer-authored content. Furthermore, we find that 9.32% of referenced network connection endpoints either entirely omit to cryptographically protect network communications or present untrustworthy SSL certificates.
This paper reviews the challenges faced when securing data on mobile devices. After a discussion of the state-of-the-art of secure storage for iOS and Android, the paper introduces an attack which demonstrates how Full Disk Encryption (FDE) on Android can be ineffective in practice.
When reasoning about software security, researchers and practitioners use the phrase ``attack surface'' as a metaphor for risk. Enumerate and minimize the ways attackers can break in then risk is reduced and the system is better protected, the metaphor says. But software systems are much more complicated than their surfaces. We propose function- and file-level attack surface metrics–-proximity and risky walk–-that enable fine-grained risk assessment. Our risky walk metric is highly configurable: we use PageRank on a probability-weighted call graph to simulate attacker behavior of finding or exploiting a vulnerability. We provide evidence-based guidance for deploying these metrics, including an extensive parameter tuning study. We conducted an empirical study on two large open source projects, FFmpeg and Wireshark, to investigate the potential correlation between our metrics and historical post-release vulnerabilities. We found our metrics to be statistically significantly associated with vulnerable functions/files with a small-to-large Cohen's d effect size. Our prediction model achieved an increase of 36% (in FFmpeg) and 27% (in Wireshark) in the average value of F-measure over a base model built with SLOC and coupling metrics. Our prediction model outperformed comparable models from prior literature with notable improvements: 58% reduction in false negative rate, 81% reduction in false positive rate, and 548% increase in F-measure. These metrics advance vulnerability prevention by [(a)] being flexible in terms of granularity, performing better than vulnerability prediction literature, and being tunable so that practitioners can tailor the metrics to their products and better assess security risk.
A novel attack model is proposed against the existing wireless link-based source identification, which classifies packet sources according to the physical-layer link signatures. A link signature is believed to be a more reliable indicator than an IP or MAC address for identifying packet source, as it is generally harder to modify/forge. It is therefore expected to be a future authentication against impersonation and DoS attacks. However, if an attacker is equipped with the same capability/hardware as the authenticator to process physical-layer signals, a link signature can be easily manipulated by any nearby wireless device during the training phase. Based on this finding, we propose an attack model, called the analog man-in-the-middle (AMITM) attack, which utilizes the latest full-duplex relay technology to inject semi-controlled link signatures into authorized packets and reproduce the injected signature in the fabricated packets. Our experimental evaluation shows that with a proper parameter setting, 90% of fabricated packets are classified as those sent from an authorized transmitter. A countermeasure against this new attack is also proposed for the authenticator to inject link-signature noise by the same attack methodology.
Recently, code reuse attacks (CRAs) have emerged as a new class of ingenious security threatens. Attackers can utilize CRAs to hijack the control flow of programs to perform malicious actions without injecting any codes. Existing defenses against CRAs often incur high memory and performance overheads or require extending the existing processors' instruction set architectures (ISAs). To tackle these issues, we propose a hardware-based control flow integrity (CFI) that employs physical unclonable functions (PUF)-based linear encryption architecture (LEA) to protect against CRAs with negligible hardware extending and run time overheads. The proposed method can protect ret and indirect jmp instructions from return oriented programming (ROP) and jump oriented programming (JOP) without any additional software manipulations and extending ISAs. The pre-process will be conducted on codes once the executable binary is loaded into memory, and the real-time control flow verification based on LEA can be done while ret and jmp instructions are executed. Performance evaluations on benchmarks show that the proposed method only introduces 0.61% run-time overhead and 0.63% memory overhead on average.
Lightweight cryptography has been widely utilized in resource constrained embedded devices of Cyber-Physical System (CPS) terminals. The hostile and unattended environment in many scenarios make those endpoints easy to be attacked by hardware based techniques. As a resource-efficient countermeasure against Fault Attacks, parity Concurrent Error Detection (CED) is preferably integrated with security-critical algorithm in CPS terminals. The parity bit changes if an odd number of faults occur during the cipher execution. In this paper, we analyze the effectiveness of fault detection of a parity CED protected cipher (PRESENT) using laser fault injection. The experimental results show that the laser perturbation to encryption can easily flip an even number of data bits, where the faults cannot be detected by parity. Due to the similarity of different parity structures, our attack can bypass almost all parity protections in block ciphers. Some suggestions are given to enhance the security of parity implementations.
Modern operating systems use hardware support to protect against control-flow hijacking attacks such as code-injection attacks. Typically, write access to executable pages is prevented and kernel mode execution is restricted to kernel code pages only. However, current CPUs provide no protection against code-reuse attacks like ROP. ASLR is used to prevent these attacks by making all addresses unpredictable for an attacker. Hence, the kernel security relies fundamentally on preventing access to address information. We introduce Prefetch Side-Channel Attacks, a new class of generic attacks exploiting major weaknesses in prefetch instructions. This allows unprivileged attackers to obtain address information and thus compromise the entire system by defeating SMAP, SMEP, and kernel ASLR. Prefetch can fetch inaccessible privileged memory into various caches on Intel x86. It also leaks the translation-level for virtual addresses on both Intel x86 and ARMv8-A. We build three attacks exploiting these properties. Our first attack retrieves an exact image of the full paging hierarchy of a process, defeating both user space and kernel space ASLR. Our second attack resolves virtual to physical addresses to bypass SMAP on 64-bit Linux systems, enabling ret2dir attacks. We demonstrate this from unprivileged user programs on Linux and inside Amazon EC2 virtual machines. Finally, we demonstrate how to defeat kernel ASLR on Windows 10, enabling ROP attacks on kernel and driver binary code. We propose a new form of strong kernel isolation to protect commodity systems incuring an overhead of only 0.06-5.09%.
Vehicle localization is important in many applications of vehicular networks. The Global Positioning System (GPS) has been critical for vehicle localization. However, the case where the GPS is spoofed through a false data injection attack can be lead to devastating consequences, especially in localization solutions that make use of cooperation among multiple vehicles. Hence, resilient localization algorithms are needed that can achieve a baseline of performance in the case of a false data injection attack. This poster presents preliminary results of an inter-vehicle communication assisted localization algorithm that is resilient to false data injection attacks for the vehicles not directly attacked. The algorithm makes use of V2V and V2I communication – along with on-board GPS receiver, odometer, and compass – to achieve precise localization results.
Object Injection Vulnerability (OIV) is an emerging threat for web applications. It involves accepting external inputs during deserialization operation and use the inputs for sensitive operations such as file access, modification, and deletion. The challenge is the automation of the detection process. When the application size is large, it becomes hard to perform traditional approaches such as data flow analysis. Recent approaches fall short of narrowing down the list of source files to aid developers in discovering OIV and the flexibility to check for the presence of OIV through various known APIs. In this work, we address these limitations by exploring a concept borrowed from the information retrieval domain called Latent Semantic Indexing (LSI) to discover OIV. The approach analyzes application source code and builds an initial term document matrix which is then transformed systematically using singular value decomposition to reduce the search space. The approach identifies a small set of documents (source files) that are likely responsible for OIVs. We apply the LSI concept to three open source PHP applications that have been reported to contain OIVs. Our initial evaluation results suggest that the proposed LSI-based approach can identify OIVs and identify new vulnerabilities.
A class of cyber-attacks called False Data Injection attacks that target measurement data used for state estimation in the power grid are currently under study by the research community. These attacks modify sensor readings obtained from meters with the aim of misleading the control center into taking ill-advised response action. It has been shown that an attacker with knowledge of the network topology can craft an attack that bypasses existing bad data detection schemes (largely based on residual generation) employed in the power grid. We propose a multi-agent system for detecting false data injection attacks against state estimation. The multi-agent system is composed of software implemented agents created for each substation. The agents facilitate the exchange of information including measurement data and state variables among substations. We demonstrate that the information exchanged among substations, even untrusted, enables agents cooperatively detect disparities between local state variables at the substation and global state variables computed by the state estimator. We show that a false data injection attack that passes bad data detection for the entire system does not pass bad data detection for each agent.
In this paper, we propose new types of cascading attacks against smart grid that use control command disaggregation and core smart grid services. Although there have been tremendous research efforts in injection attacks against the smart grid, to our knowledge most studies focus on false meter data injection, and false command and false feedback injection attacks have been scarcely investigated. In addition, control command disaggregation has not been addressed from a security point of view, in spite of the fact that it is becoming one of core concepts in the smart grid and hence analysing its security implications is crucial to the smart grid security. Our cascading attacks use false control command, false feedback or false meter data injection, and cascade the effects of such injections throughout the smart grid subsystems and components. Our analysis and evaluation results show that the proposed attacks can cause serious service disruptions in the smart grid. The evaluation has been performed on a widely used smart grid simulation platform.
This paper establishes a new framework for electrical cyber-physical systems (ECPSs). The communication network is designed by the characteristics of a power grid. The interdependent relationship of communication networks and power grids is described by data-uploading channels and commands-downloading channels. Control strategies (such as load shedding and relay protection) are extended to this new framework for analyzing the performance of ECPSs under several attack scenarios. The fragility of ECPSs under cyber attacks (DoS attack and false data injection attack) and the effectiveness of relay protection policies are verified by experimental results.
The safety-critical aspects of cyber-physical systems motivate the need for rigorous analysis of these systems. In the literature this work is often done using idealized models of systems where the analysis can be carried out using high-level reasoning techniques such as Lyapunov functions and model checking. In this paper we present VERIDRONE, a foundational framework for reasoning about cyber-physical systems at all levels from high-level models to C code that implements the system. VERIDRONE is a library within the Coq proof assistant enabling us to build on its foundational implementation, its interactive development environments, and its wealth of libraries capturing interesting theories ranging from real numbers and differential equations to verified compilers and floating point numbers. These features make proof assistants in general, and Coq in particular, a powerful platform for unifying foundational results about safety-critical systems and ensuring interesting properties at all levels of the stack.
Blind signature can be deployed to preserve user anonymity and is widely used in digital cash and e-voting. As an interactive protocol, blind signature schemes require high efficiency. In this paper, we propose a code-based blind signature scheme with high efficiency as it can produce a valid signature without many loops unlike existing code-based signature schemes. We then prove the security of our scheme in the random oracle model and analyze the efficiency of our scheme. Since a code-based signature scheme is post-quantum cryptography, therefore, the scheme is also able to resist quantum attacks.
Physical layer security can ensure secure communication over noisy channels in the presence of an eavesdropper with unlimited computational power. We adopt an information theoretic variant of semantic-security (SS) (a cryptographic gold standard), as our secrecy metric and study the open problem of the type II wiretap channel (WTC II) with a noisy main channel is, whose secrecy-capacity is unknown even under looser metrics than SS. Herein the secrecy-capacity is derived and shown to be equal to its SS capacity. In this setting, the legitimate users communicate via a discrete-memory less (DM) channel in the presence of an eavesdropper that has perfect access to a subset of its choosing of the transmitted symbols, constrained to a fixed fraction of the block length. The secrecy criterion is achieved simultaneously for all possible eavesdropper subset choices. On top of that, SS requires negligible mutual information between the message and the eavesdropper's observations even when maximized over all message distributions. A key tool for the achievability proof is a novel and stronger version of Wyner's soft covering lemma. Specifically, the lemma shows that a random codebook achieves the soft-covering phenomenon with high probability. The probability of failure is doubly-exponentially small in the block length. Since the combined number of messages and subsets grows only exponentially with the block length, SS for the WTC II is established by using the union bound and invoking the stronger soft-covering lemma. The direct proof shows that rates up to the weak-secrecy capacity of the classic WTC with a DM erasure channel (EC) to the eavesdropper are achievable. The converse follows by establishing the capacity of this DM wiretap EC as an upper bound for the WTC II. From a broader perspective, the stronger soft-covering lemma constitutes a tool for showing the existence of codebooks that satisfy exponentially many constraints, a beneficial ability for many other applications in information theoretic security.