Biblio
With the growing use of the Robot Operating System (ROS), it can be argued that it has become a de-facto framework for developing robotic solutions. ROS is used to build robotic applications for industrial automation, home automation, medical and even automatic robotic surveillance. However, whenever ROS is utilized, security is one of the main concerns that needs to be addressed in order to ensure a secure network communication of robots. Cyber-attacks may hinder evolution and adaptation of most ROS-enabled robotic systems for real-world use over the Internet. Thus, it is important to address and prevent security threats associated with the use of ROS-enabled applications. In this paper, we propose a novel approach for securing ROS-enabled robotic system by integrating ROS with the Message Queuing Telemetry Transport (MQTT) protocol. We manage to secure robots' network communications by providing authentication and data encryption, therefore preventing man-in-the-middle and hijacking attacks. We also perform real-world experiments to assess how the performance of a ROS-enabled robotic surveillance system is affected by the proposed approach.
Smart buildings are controlled by multiple cyber-physical systems that provide critical services such as heating, ventilation, lighting and access control. These building systems are becoming increasingly vulnerable to both cyber and physical attacks. We introduce a multi-model methodology for assessing the security of these systems, which utilises INTO-CPS, a suite of modelling, simulation, and analysis tools for designing cyber-physical systems. Using a fan coil unit case study we show how its security can be systematically assessed when subjected to Man-in-the-Middle attacks on the data connections between system components. We suggest our methodology would enable building managers and security engineers to design attack countermeasures and refine their effectiveness.
Wearable devices are being more popular in our daily life. Especially, smart wristbands are booming in the market recently, which can be used to monitor health status, track fitness data, or even do medical tests, etc. For this reason, smart wristbands can obtain a lot of personal data. Hence, users and manufacturers should pay more attention to the security aspects of smart wristbands. However, we have found that some Bluetooth Low Energy based smart wristbands have very weak or even no security protection mechanism, therefore, they are vulnerable to replay attacks, man-in-the-middle attacks, brute-force attacks, Denial of Service (DoS) attacks, etc. We have investigated four different popular smart wristbands and a smart watch. Among them, only the smart watch is protected by some security mechanisms while the other four smart wristbands are not protected. In our experiments, we have also figured out all the message formats of the controlling commands of these smart wristbands and developed an Android software application as a testing tool. Powered by the resolved command formats, this tool can directly control these wristbands, and any other wristbands of these four models, without using the official supporting applications.
We introduce $μ$DTNSec, the first fully-implemented security layer for Delay/Disruption-Tolerant Networks (DTN) on microcontrollers. It provides protection against eavesdropping and Man-in-the-Middle attacks that are especially easy in these networks. Following the Store-Carry-Forward principle of DTNs, an attacker can simply place itself on the route between source and destination. Our design consists of asymmetric encryption and signatures with Elliptic Curve Cryptography and hardware-backed symmetric encryption with the Advanced Encryption Standard. $μ$DTNSec has been fully implemented as an extension to $μ$DTN on Contiki OS and is based on the Bundle Protocol specification. Our performance evaluation shows that the choice of the curve (secp128r1, secp192r1, secp256r1) dominates the influence of the payload size. We also provide energy measurements for all operations to show the feasibility of our security layer on energy-constrained devices.
This paper describes biometric-based cryptographic techniques for providing confidential communications and strong, mutual and multifactor authentication on the Internet of Things. The described security techniques support the goals of universal access when users are allowed to select from multiple choice alternatives to authenticate their identities. By using a Biometric Authenticated Key Exchange (BAKE) protocol, user credentials are protected against phishing and Man-in-the-Middle attacks. Forward secrecy is achieved using a Diffie-Hellman key establishment scheme with fresh random values each time the BAKE protocol is operated. Confidentiality is achieved using lightweight cryptographic algorithms that are well suited for implementation in resource constrained environments, those limited by processing speed, limited memory and power availability. Lightweight cryptography can offer strong confidentiality solutions that are practical to implement in Internet of Things systems, where efficient execution, and small memory requirements and code size are required.
There has been a rampant surge in compromise of consumer grade small scale routers in the last couple of years. Attackers are able to manipulate the Domain Name Space (DNS) settings of these devices hence making them capable of initiating different man-in-the-middle attacks. By this study we aim to explore and comprehend the current state of these attacks. Focusing on the Indian Autonomous System Number (ASN) space, we performed scans over 3 months to successfully find vulnerable routers and extracted the DNS information from these vulnerable routers. In this paper we present the methodology followed for scanning, a detailed analysis report of the information we were able to collect and an insight into the current trends in the attack patterns. We conclude by proposing recommendations for mitigating these attacks.