Biblio
This paper introduces lronMask, a new versatile verification tool for masking security. lronMask is the first to offer the verification of standard simulation-based security notions in the probing model as well as recent composition and expandability notions in the random probing model. It supports any masking gadgets with linear randomness (e.g. addition, copy and refresh gadgets) as well as quadratic gadgets (e.g. multiplication gadgets) that might include non-linear randomness (e.g. by refreshing their inputs), while providing complete verification results for both types of gadgets. We achieve this complete verifiability by introducing a new algebraic characterization for such quadratic gadgets and exhibiting a complete method to determine the sets of input shares which are necessary and sufficient to perform a perfect simulation of any set of probes. We report various benchmarks which show that lronMask is competitive with state-of-the-art verification tools in the probing model (maskVerif, scVerif, SILVEH, matverif). lronMask is also several orders of magnitude faster than VHAPS -the only previous tool verifying random probing composability and expandability- as well as SILVEH -the only previous tool providing complete verification for quadratic gadgets with nonlinear randomness. Thanks to this completeness and increased performance, we obtain better bounds for the tolerated leakage probability of state-of-the-art random probing secure compilers.
Updating the structure of attack graph templates based on real-time alerts from Intrusion Detection Systems (IDS), in an Industrial Control System (ICS) network, is currently done manually by security experts. But, a highly-connected smart power systems, that can inadvertently expose numerous vulnerabilities to intruders for targeting grid resilience, needs automatic fast updates on learning attack graph structures, instead of manual intervention, to enable fast isolation of compromised network to secure the grid. Hence, in this work, we develop a technique to first construct a prior Bayesian Attack Graph (BAG) based on a predefined threat model and a synthetic communication network for a cyber-physical power system. Further, we evaluate a few score-based and constraint-based structural learning algorithms to update the BAG structure based on real-time alerts, based on scalability, data dependency, time complexity and accuracy criteria.
Language-based information-flow control (IFC) techniques often rely on special purpose, ad-hoc primitives to address different covert channels that originate in the runtime system, beyond the scope of language constructs. Since these piecemeal solutions may not compose securely, there is a need for a unified mechanism to control covert channels. As a first step towards this goal, we argue for the design of a general interface that allows programs to safely interact with the runtime system and the available computing resources. To coordinate the communication between programs and the runtime system, we propose the use of asynchronous exceptions (interrupts), which, to the best of our knowledge, have not been considered before in the context of IFC languages. Since asynchronous exceptions can be raised at any point during execution-often due to the occurrence of an external event-threads must temporarily mask them out when manipulating locks and shared data structures to avoid deadlocks and, therefore, breaking program invariants. Crucially, the naive combination of asynchronous exceptions with existing features of IFC languages (e.g., concurrency and synchronization variables) may open up new possibilities of information leakage. In this paper, we present MACasync, a concurrent, statically enforced IFC language that, as a novelty, features asynchronous exceptions. We show how asynchronous exceptions easily enable (out of the box) useful programming patterns like speculative execution and some degree of resource management. We prove that programs in MACasync satisfy progress-sensitive non-interference and mechanize our formal claims in the Agda proof assistant.