Visible to the public Biblio

Filters: Keyword is optimization problem  [Clear All Filters]
2021-02-16
Lau, T. S., Tay, W. Peng.  2020.  Privacy-Aware Quickest Change Detection. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :5999—6003.
This paper considers the problem of the quickest detection of a change in distribution while taking privacy considerations into account. Our goal is to sanitize the signal to satisfy information privacy requirements while being able to detect a change quickly. We formulate the privacy-aware quickest change detection (QCD) problem by including a privacy constraint to Lorden's minimax formulation. We show that the Generalized Likelihood Ratio (GLR) CuSum achieves asymptotic optimality with a properly designed sanitization channel and formulate the design of this sanitization channel as an optimization problem. For computational tractability, a continuous relaxation for the discrete counting constraint is proposed and the augmented Lagrangian method is applied to obtain locally optimal solutions.
2020-10-05
Zhou, Xingyu, Li, Yi, Barreto, Carlos A., Li, Jiani, Volgyesi, Peter, Neema, Himanshu, Koutsoukos, Xenofon.  2019.  Evaluating Resilience of Grid Load Predictions under Stealthy Adversarial Attacks. 2019 Resilience Week (RWS). 1:206–212.
Recent advances in machine learning enable wider applications of prediction models in cyber-physical systems. Smart grids are increasingly using distributed sensor settings for distributed sensor fusion and information processing. Load forecasting systems use these sensors to predict future loads to incorporate into dynamic pricing of power and grid maintenance. However, these inference predictors are highly complex and thus vulnerable to adversarial attacks. Moreover, the adversarial attacks are synthetic norm-bounded modifications to a limited number of sensors that can greatly affect the accuracy of the overall predictor. It can be much cheaper and effective to incorporate elements of security and resilience at the earliest stages of design. In this paper, we demonstrate how to analyze the security and resilience of learning-based prediction models in power distribution networks by utilizing a domain-specific deep-learning and testing framework. This framework is developed using DeepForge and enables rapid design and analysis of attack scenarios against distributed smart meters in a power distribution network. It runs the attack simulations in the cloud backend. In addition to the predictor model, we have integrated an anomaly detector to detect adversarial attacks targeting the predictor. We formulate the stealthy adversarial attacks as an optimization problem to maximize prediction loss while minimizing the required perturbations. Under the worst-case setting, where the attacker has full knowledge of both the predictor and the detector, an iterative attack method has been developed to solve for the adversarial perturbation. We demonstrate the framework capabilities using a GridLAB-D based power distribution network model and show how stealthy adversarial attacks can affect smart grid prediction systems even with a partial control of network.
2020-01-20
Waqar, Ali, Hu, Junjie, Mushtaq, Muhammad Rizwan, Hussain, Hadi, Qazi, Hassaan Aziz.  2019.  Energy Management in an Islanded Microgrid: A Consensus Theory Approach. 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). :1–6.

This article presents a consensus based distributed energy management optimization algorithm for an islanded microgrid. With the rapid development of renewable energy and distributed generation (DG) energy management is becoming more and more distributed. To solve this problem a multi-agent system based distributed solution is designed in this work which uses lambda-iteration method to solve optimization problem. Moreover, the algorithm is fully distributed and transmission losses are also considered in the modeling process which enhanced the practicality of proposed work. Simulations are performed for different cases on 8-bus microgrid to show the effectiveness of algorithm. Moreover, a scalability test is performed at the end to further justify the expandability performance of algorithm for more advanced networks.

2019-02-21
Xie, S., Wang, G..  2018.  Optimization of parallel turnings using particle swarm intelligence. 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI). :230–234.
Machining process parameters optimization is of concern in machining fields considering machining cost factor. In order to solve the optimization problem of machining process parameters in parallel turning operations, which aims to reduce the machining cost, two PSO-based optimization approaches are proposed in this paper. According to the divide-and-conquer idea, the problem is divided into some similar sub-problems. A particle swarm optimization then is derived to conquer each sub-problem to find the optimal results. Simulations show that, comparing to other optimization approaches proposed previously, the proposed two PSO-based approaches can get optimal machining parameters to reduce both the machining cost (UC) and the computation time.
2018-06-07
Rullo, A., Serra, E., Bertino, E., Lobo, J..  2017.  Shortfall-Based Optimal Security Provisioning for Internet of Things. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). :2585–2586.

We present a formal method for computing the best security provisioning for Internet of Things (IoT) scenarios characterized by a high degree of mobility. The security infrastructure is intended as a security resource allocation plan, computed as the solution of an optimization problem that minimizes the risk of having IoT devices not monitored by any resource. We employ the shortfall as a risk measure, a concept mostly used in the economics, and adapt it to our scenario. We show how to compute and evaluate an allocation plan, and how such security solutions address the continuous topology changes that affect an IoT environment.

Hinojosa, V..  2017.  A generalized stochastic N-m security-constrained generation expansion planning methodology using partial transmission distribution factors. 2017 IEEE Power Energy Society General Meeting. :1–5.

This study proposes to apply an efficient formulation to solve the stochastic security-constrained generation capacity expansion planning (GCEP) problem using an improved method to directly compute the generalized generation distribution factors (GGDF) and the line outage distribution factors (LODF) in order to model the pre- and the post-contingency constraints based on the only application of the partial transmission distribution factors (PTDF). The classical DC-based formulation has been reformulated in order to include the security criteria solving both pre- and post-contingency constraints simultaneously. The methodology also takes into account the load uncertainty in the optimization problem using a two-stage multi-period model, and a clustering technique is used as well to reduce load scenarios (stochastic problem). The main advantage of this methodology is the feasibility to quickly compute the LODF especially with multiple-line outages (N-m). This idea could speed up contingency analyses and improve significantly the security-constrained analyses applied to GCEP problems. It is worth to mentioning that this approach is carried out without sacrificing optimality.

2018-02-06
Li, X., Smith, J. D., Thai, M. T..  2017.  Adaptive Reconnaissance Attacks with Near-Optimal Parallel Batching. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). :699–709.

In assessing privacy on online social networks, it is important to investigate their vulnerability to reconnaissance strategies, in which attackers lure targets into being their friends by exploiting the social graph in order to extract victims' sensitive information. As the network topology is only partially revealed after each successful friend request, attackers need to employ an adaptive strategy. Existing work only considered a simple strategy in which attackers sequentially acquire one friend at a time, which causes tremendous delay in waiting for responses before sending the next request, and which lack the ability to retry failed requests after the network has changed. In contrast, we investigate an adaptive and parallel strategy, of which attackers can simultaneously send multiple friend requests in batch and recover from failed requests by retrying after topology changes, thereby significantly reducing the time to reach the targets and greatly improving robustness. We cast this approach as an optimization problem, Max-Crawling, and show it inapproximable within (1 - 1/e + $ε$). We first design our core algorithm PM-AReST which has an approximation ratio of (1 - e-(1-1/e)) using adaptive monotonic submodular properties. We next tighten our algorithm to provide a nearoptimal solution, i.e. having a ratio of (1 - 1/e), via a two-stage stochastic programming approach. We further establish the gap bound of (1 - e-(1-1/e)2) between batch strategies versus the optimal sequential one. We experimentally validate our theoretical results, finding that our algorithm performs nearoptimally in practice and that this is robust under a variety of problem settings.

2017-12-20
Lu, W., Jiang, Y., Yin, C., Tao, X., Lai, P..  2017.  Security beamforming algorithms in multibeam satellite systems. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :1272–1277.
This paper investigates the physical layer security in a multibeam satellite communication system, where each legitimate user is surrounded by one eavesdropper. First of all, an optimization problem is formulated to maximize the sum of achievable secrecy rate, while satisfying the on-board satellite transmit power constraint. Then, two transmit beamforming(BF) schemes, namely, the zero-forcing (ZF) and the signal-to-leakage-and-noise ratio (SLNR) BF algorithms are proposed to obtain the BF weight vectors as well as power allocation coefficients. Finally, simulation results are provided to verify the validity of the two proposed methods and demonstrate that the SLNR BF algorithm outperforms the ZF BF algorithm.
2017-03-08
Torabi, A., Shishegar, A. A..  2015.  Combination of characteristic Green's function technique and rational function fitting method for computation of modal reflectivity at the optical waveguide end-facet. 2015 International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS). 2:14–21.

A novel method for computation of modal reflectivity at optical waveguide end-facet is presented. The method is based on the characteristic Green's function (CGF) technique. Using separability assumption of the structure and rational function fitting method (RFFM), a closed-form field expression is derived for optical planar waveguide. The uniform derived expression consists of discrete and continuous spectrum contributions which denotes guided and radiation modes effects respectively. An optimization problem is then defined to calculate the exact reflection coefficients at the end-facet for all extracted poles obtained from rational function fitting step. The proposed CGF-RFFM-optimization offers superior exactness in comparison with the previous reported CGF-complex images (CI) technique due to contribution of all components of field in the optimization problem. The main advantage of the proposed method lies in its simple implementation as well as precision for any refractive index contrast. Excellent numerical agreements with rigorous methods are shown in several examples.