Biblio
In recent years, Counterfeit goods play a vital role in product manufacturing industries. This Phenomenon affects the sales and profit of the companies. To ensure the identification of real products throughout the supply chain, a functional block chain technology used for preventing product counterfeiting. By using a block chain technology, consumers do not need to rely on the trusted third parties to know the source of the purchased product safely. Any application that uses block chain technology as a basic framework ensures that the data content is “tamper-resistant”. In view of the fact that a block chain is the decentralized, distributed and digital ledger that stores transactional records known as blocks of the public in several databases known as chain across many networks. Therefore, any involved block cannot be changed in advance, without changing all subsequent block. In this paper, counterfeit products are detected using barcode reader, where a barcode of the product linked to a Block Chain Based Management (BCBM) system. So the proposed system may be used to store product details and unique code of that product as blocks in database. It collects the unique code from the customer and compares the code against entries in block chain database. If the code matches, it will give notification to the customer, otherwise it gets information from the customer about where they bought the product to detect counterfeit product manufacturer.
Globalization of semiconductor design, manufacturing, packaging and testing has led to several security issues like over production of chips, shipping of faulty or partially functional chips, intellectual property infringement, cloning, counterfeit chips and insertion of hardware trojans in design house or at foundry etc. Adversaries will extract chips from obsolete PCB's and release used parts as new chips into the supply chain. The faulty chips or partially functioning chips can enter supply chain from untrusted Assembly Packaging and Test (APT) centers. These counterfeit parts are not reliable and cause catastrophic consequences in critical applications. To mitigate the counterfeits entering supply chain, to protect the Intellectual Property (IP) rights of owners and to meter the chip, Secure Split Test (SST) is a promising solution. CSST (Connecticut SST) is an improvement to SST, which simplifies the communication required between ATP center and design house. CSST addresses the scan tests, but it does not address the functional testing of chips. The functional testing of chips during production testing is critical in weeding out faulty chips in recent times. In this paper, we present a method called PUF-SST (Physical Unclonable Function – SST) to perform both scan tests and functional tests without compromising on security features described in CSST.
RFID-enabled product supply chain visibility is usually implemented by building up a view of the product history of its activities starting from manufacturing or even earlier with a dynamically updated e-pedigree for track-and-trace, which is examined and authenticated at each node of the supply chain for data consistence with the pre-defined one. However, while effectively reducing the risk of fakes, this visibility can't guarantee that the product is authentic without taking further security measures. To the best of our knowledge, this requires deeper understandings on associations of object events with the counterfeiting activities, which is unfortunately left blank. In this paper, the taxonomy of counterfeiting possibilities is initially developed and analyzed, the structure of EPC-based events is then re-examined, and an object-centric coding mechanism is proposed to construct the object-based event “pedigree” for such event exception detection and inference. On this basis, the system architecture framework to achieve the objectivity of object event visibility for anti-counterfeiting is presented, which is also applicable to other aspects of supply chain management.
We present a brief survey on the state-of-the-art design and verification techniques: IC obfuscation, watermarking, fingerprinting, metering, concurrent checking and verification, for mitigating supply chain security risks such as IC misusing, counterfeiting and overbuilding.
RFID (Radio Frequency Identification) systems are emerging as one of the most pervasive computing technologies in history due to their low cost and their broad applicability. Latest technologies have brought costs down and standards are being developed. Actually, RFID is mostly used as a medium for numerous tasks including managing supply chains, tracking livestock, preventing counterfeiting, controlling building access, and supporting automated checkout. The use of RFID is limited by security concerns and delays in standardization. This paper presents some research done on RFID, the RFID applications and RFID data security.