Visible to the public Biblio

Filters: Keyword is Eigenvalues and eigenfunctions  [Clear All Filters]
2023-01-05
Laouiti, Dhia Eddine, Ayaida, Marwane, Messai, Nadhir, Najeh, Sameh, Najjar, Leila, Chaabane, Ferdaous.  2022.  Sybil Attack Detection in VANETs using an AdaBoost Classifier. 2022 International Wireless Communications and Mobile Computing (IWCMC). :217–222.
Smart cities are a wide range of projects made to facilitate the problems of everyday life and ensure security. Our interest focuses only on the Intelligent Transport System (ITS) that takes care of the transportation issues using the Vehicular Ad-Hoc Network (VANET) paradigm as its base. VANETs are a promising technology for autonomous driving that provides many benefits to the user conveniences to improve road safety and driving comfort. VANET is a promising technology for autonomous driving that provides many benefits to the user's conveniences by improving road safety and driving comfort. The problem with such rapid development is the continuously increasing digital threats. Among all these threats, we will target the Sybil attack since it has been proved to be one of the most dangerous attacks in VANETs. It allows the attacker to generate multiple forged identities to disseminate numerous false messages, disrupt safety-related services, or misuse the systems. In addition, Machine Learning (ML) is showing a significant influence on classification problems, thus we propose a behavior-based classification algorithm that is tested on the provided VeReMi dataset coupled with various machine learning techniques for comparison. The simulation results prove the ability of our proposed mechanism to detect the Sybil attack in VANETs.
2021-11-29
Van Rompaey, Robbe, Moonen, Marc.  2021.  Distributed Adaptive Acoustic Contrast Control for Node-specific Sound Zoning in a Wireless Acoustic Sensor and Actuator Network. 2020 28th European Signal Processing Conference (EUSIPCO). :481–485.
This paper presents a distributed adaptive algorithm for node-specific sound zoning in a wireless acoustic sensor and actuator network (WASAN), based on a network-wide acoustic contrast control (ACC) method. The goal of the ACC method is to simultaneously create node-specific zones with high signal power (bright zones) while minimizing power leakage in other node-specific zones (dark zones). To obtain this, a network-wide objective involving the acoustic coupling between all the loudspeakers and microphones in the WASAN is proposed where the optimal solution is based on a centralized generalized eigenvalue decomposition (GEVD). To allow for distributed processing, a gradient based GEVD algorithm is first proposed that minimizes the same objective. This algorithm can then be modified to allow for a fully distributed implementation, involving in-network summations and simple local processing. The algorithm is referred to as the distributed adaptive gradient based ACC algorithm (DAGACC). The proposed algorithm outperforms the non-cooperative distributed solution after only a few iterations and converges to the centralized solution, as illustrated by computer simulations.
2021-04-27
Furutani, S., Shibahara, T., Hato, K., Akiyama, M., Aida, M..  2020.  Sybil Detection as Graph Filtering. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
Sybils are users created for carrying out nefarious actions in online social networks (OSNs) and threaten the security of OSNs. Therefore, Sybil detection is an urgent security task, and various detection methods have been proposed. Existing Sybil detection methods are based on the relationship (i.e., graph structure) of users in OSNs. Structure-based methods can be classified into two categories: Random Walk (RW)-based and Belief Propagation (BP)-based. However, although almost all methods have been experimentally evaluated in terms of their performance and robustness to noise, the theoretical understanding of them is insufficient. In this paper, we interpret the Sybil detection problem from the viewpoint of graph signal processing and provide a framework to formulate RW- and BPbased methods as low-pass filtering. This framework enables us to theoretically compare RW- and BP-based methods and explain why BP-based methods perform well for scale-free graphs, unlike RW-based methods. Furthermore, by this framework, we relate RW- and BP-based methods and Graph Neural Networks (GNNs) and discuss the difference among these methods. Finally, we evaluate the validity of this framework through numerical experiments.
2021-03-22
Hosseinipour, A., Hojabri, H..  2020.  Small-Signal Stability Analysis and Active Damping Control of DC Microgrids Integrated With Distributed Electric Springs. IEEE Transactions on Smart Grid. 11:3737–3747.
Series DC electric springs (DCESs) are a state-of-the-art demand-side management (DSM) technology with the capability to reduce energy storage requirements of DC microgrids by manipulating the power of non-critical loads (NCLs). As the stability of DC microgrids is highly prone to dynamic interactions between the system active and passive components, this study intends to conduct a comprehensive small-signal stability analysis of a community DC microgrid integrated with distributed DCESs considering the effect of destabilizing constant power loads (CPLs). For this purpose, after deriving the small-signal model of a DCES-integrated microgrid, the sensitivity of the system dominant frequency modes to variations of various physical and control parameters is evaluated by means of eigenvalue analysis. Next, an active damping control method based on virtual RC parallel impedance is proposed for series DCESs to compensate for their slow dynamic response and to provide a dynamic stabilization function within the microgrid. Furthermore, impedance-based stability analysis is utilized to study the DC microgrid expandability in terms of integration with multiple DCESs. Finally, several case studies are presented to verify analytical findings of the paper and to evaluate the dynamic performance of the DC microgrid.
2021-02-15
Uzhga-Rebrov, O., Kuleshova, G..  2020.  Using Singular Value Decomposition to Reduce Dimensionality of Initial Data Set. 2020 61st International Scientific Conference on Information Technology and Management Science of Riga Technical University (ITMS). :1–4.
The purpose of any data analysis is to extract essential information implicitly present in the data. To do this, it often seems necessary to transform the initial data into a form that allows one to identify and interpret the essential features of their structure. One of the most important tasks of data analysis is to reduce the dimension of the original data. The paper considers an approach to solving this problem based on singular value decomposition (SVD).
2020-07-06
Evgeny, Pavlenko, Dmitry, Zegzhda, Anna, Shtyrkina.  2019.  Estimating the sustainability of cyber-physical systems based on spectral graph theory. 2019 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). :1–5.
Paper proposed an approach to estimating the sustainability of cyber-physical systems based on system state analysis. Authors suggested that sustainability is the system ability to reconfigure for recovering from attacking influences. Proposed a new criterion for cyber-physical systems sustainability assessment based on spectral graph theory. Numerical calculation of the criterion is based on distribution properties of the graph spectrum - the set of eigenvalues of the adjacency matrix corresponding to the graph. Experimental results have shown dependency of change in Δσ, difference between initial value of σstart and final σstop, on working route length, and on graph connectivity was revealed. This parameter is proposed to use as a criterion for CPS sustainability.
2020-07-03
Cai, Guang-Wei, Fang, Zhi, Chen, Yue-Feng.  2019.  Estimating the Number of Hidden Nodes of the Single-Hidden-Layer Feedforward Neural Networks. 2019 15th International Conference on Computational Intelligence and Security (CIS). :172—176.

In order to solve the problem that there is no effective means to find the optimal number of hidden nodes of single-hidden-layer feedforward neural network, in this paper, a method will be introduced to solve it effectively by using singular value decomposition. First, the training data need to be normalized strictly by attribute-based data normalization and sample-based data normalization. Then, the normalized data is decomposed based on the singular value decomposition, and the number of hidden nodes is determined according to main eigenvalues. The experimental results of MNIST data set and APS data set show that the feedforward neural network can attain satisfactory performance in the classification task.

2020-06-04
Shang, Jiacheng, Wu, Jie.  2019.  Enabling Secure Voice Input on Augmented Reality Headsets using Internal Body Voice. 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :1—9.

Voice-based input is usually used as the primary input method for augmented reality (AR) headsets due to immersive AR experience and good recognition performance. However, recent researches have shown that an attacker can inject inaudible voice commands to the devices that lack voice verification. Even if we secure voice input with voice verification techniques, an attacker can easily steal the victim's voice using low-cast handy recorders and replay it to voice-based applications. To defend against voice-spoofing attacks, AR headsets should be able to determine whether the voice is from the person who is using the AR headsets. Existing voice-spoofing defense systems are designed for smartphone platforms. Due to the special locations of microphones and loudspeakers on AR headsets, existing solutions are hard to be implemented on AR headsets. To address this challenge, in this paper, we propose a voice-spoofing defense system for AR headsets by leveraging both the internal body propagation and the air propagation of human voices. Experimental results show that our system can successfully accept normal users with average accuracy of 97% and defend against two types of attacks with average accuracy of at least 98%.

2020-05-18
Gou, Linfeng, Zhou, Zihan, Liang, Aixia, Wang, Lulu, Liu, Zhidan.  2018.  Dynamic Threshold Design Based on Kalman Filter in Multiple Fault Diagnosis. 2018 37th Chinese Control Conference (CCC). :6105–6109.
The choice of threshold is an important part of fault diagnosis. Most of the current methods use a constant threshold for detection and it is difficult to meet the robustness and sensitivity requirements of the diagnosis system. This article develops a dynamic threshold algorithm for aircraft engine fault detection and isolation systems. The algorithm firstly analyzes the bounded norm uncertainty that may appear in the process of model based on the state space equation, and gives the time domain response range calculation formula under the influence of uncertain parameters; then the Kalman filter is combined to calculate the threshold with the real-time change of state; the simulation is performed at the end. The simulation results show that dynamic threshold range changes with status in real time.
2020-04-10
Srinu, Sesham, Reddy, M. Kranthi Kumar, Temaneh-Nyah, Clement.  2019.  Physical layer security against cooperative anomaly attack using bivariate data in distributed CRNs. 2019 11th International Conference on Communication Systems Networks (COMSNETS). :410—413.
Wireless communication network (WCN) performance is primarily depends on physical layer security which is critical among all other layers of OSI network model. It is typically prone to anomaly/malicious user's attacks owing to openness of wireless channels. Cognitive radio networking (CRN) is a recently emerged wireless technology that is having numerous security challenges because of its unlicensed access of wireless channels. In CRNs, the security issues occur mainly during spectrum sensing and is more pronounced during distributed spectrum sensing. In recent past, various anomaly effects are modelled and developed detectors by applying advanced statistical techniques. Nevertheless, many of these detectors have been developed based on sensing data of one variable (energy measurement) and degrades their performance drastically when the data is contaminated with multiple anomaly nodes, that attack the network cooperatively. Hence, one has to develop an efficient multiple anomaly detection algorithm to eliminate all possible cooperative attacks. To achieve this, in this work, the impact of anomaly on detection probability is verified beforehand in developing an efficient algorithm using bivariate data to detect possible attacks with mahalanobis distance measure. Result discloses that detection error of cooperative attacks by anomaly has significant impact on eigenvalue-based sensing.
2020-03-04
Wiese, Moritz, Boche, Holger.  2019.  A Graph-Based Modular Coding Scheme Which Achieves Semantic Security. 2019 IEEE International Symposium on Information Theory (ISIT). :822–826.

It is investigated how to achieve semantic security for the wiretap channel. A new type of functions called biregular irreducible (BRI) functions, similar to universal hash functions, is introduced. BRI functions provide a universal method of establishing secrecy. It is proved that the known secrecy rates of any discrete and Gaussian wiretap channel are achievable with semantic security by modular wiretap codes constructed from a BRI function and an error-correcting code. A characterization of BRI functions in terms of edge-disjoint biregular graphs on a common vertex set is derived. This is used to study examples of BRI functions and to construct new ones.

Korzhik, Valery, Starostin, Vladimir, Morales-Luna, Guillermo, Kabardov, Muaed, Gerasimovich, Aleksandr, Yakovlev, Victor, Zhuvikin, Aleksey.  2019.  Information Theoretical Secure Key Sharing Protocol for Noiseless Public Constant Parameter Channels without Cryptographic Assumptions. 2019 Federated Conference on Computer Science and Information Systems (FedCSIS). :327–332.

We propose a new key sharing protocol executed through any constant parameter noiseless public channel (as Internet itself) without any cryptographic assumptions and protocol restrictions on SNR in the eavesdropper channels. This protocol is based on extraction by legitimate users of eigenvalues from randomly generated matrices. A similar protocol was proposed recently by G. Qin and Z. Ding. But we prove that, in fact, this protocol is insecure and we modify it to be both reliable and secure using artificial noise and privacy amplification procedure. Results of simulation prove these statements.

2020-01-20
Wu, Di, Chen, Tianen, Chen, Chienfu, Ahia, Oghenefego, Miguel, Joshua San, Lipasti, Mikko, Kim, Younghyun.  2019.  SECO: A Scalable Accuracy Approximate Exponential Function Via Cross-Layer Optimization. 2019 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED). :1–6.

From signal processing to emerging deep neural networks, a range of applications exhibit intrinsic error resilience. For such applications, approximate computing opens up new possibilities for energy-efficient computing by producing slightly inaccurate results using greatly simplified hardware. Adopting this approach, a variety of basic arithmetic units, such as adders and multipliers, have been effectively redesigned to generate approximate results for many error-resilient applications.In this work, we propose SECO, an approximate exponential function unit (EFU). Exponentiation is a key operation in many signal processing applications and more importantly in spiking neuron models, but its energy-efficient implementation has been inadequately explored. We also introduce a cross-layer design method for SECO to optimize the energy-accuracy trade-off. At the algorithm level, SECO offers runtime scaling between energy efficiency and accuracy based on approximate Taylor expansion, where the error is minimized by optimizing parameters using discrete gradient descent at design time. At the circuit level, our error analysis method efficiently explores the design space to select the energy-accuracy-optimal approximate multiplier at design time. In tandem, the cross-layer design and runtime optimization method are able to generate energy-efficient and accurate approximate EFU designs that are up to 99.7% accurate at a power consumption of 3.73 pJ per exponential operation. SECO is also evaluated on the adaptive exponential integrate-and-fire neuron model, yielding only 0.002% timing error and 0.067% value error compared to the precise neuron model.

2019-12-17
Li, Wei, Belling, Samuel W..  2018.  Symmetric Eigen-Wavefunctions of Quantum Dot Bound States Resulting from Geometric Confinement. 2018 IEEE International Conference on Electro/Information Technology (EIT). :0266-0270.

Self-assembled semiconductor quantum dots possess an intrinsic geometric symmetry due to the crystal periodic structure. In order to systematically analyze the symmetric properties of quantum dots' bound states resulting only from geometric confinement, we apply group representation theory. We label each bound state for two kinds of popular quantum dot shapes: pyramid and half ellipsoid with the irreducible representation of the corresponding symmetric groups, i.e., C4v and C2v, respectively. Our study completes all the possible irreducible representation cases of groups C4v and C2v. Using the character theory of point groups, we predict the selection rule for electric dipole induced transitions. We also investigate the impact of quantum dot aspect ratio on the symmetric properties of the state wavefunction. This research provides a solid foundation to continue exploring quantum dot symmetry reduction or broken phenomena because of strain, band-mixing and shape irregularity. The results will benefit the researchers who are interested in quantum dot symmetry related effects such as absorption or emission spectra, or those who are studying quantum dots using analytical or numerical simulation approaches.

2019-11-25
Sanjaroon, Vahideh, Motahari, Abolfazl S., Farhadi, Alireza, Khalaj, Babak. H..  2019.  Tight Bound on the Stability of Control Systems over Parallel Gaussian Channels Using a New Joint Source Channel Coding. 2019 Iran Workshop on Communication and Information Theory (IWCIT). :1–6.
In this paper, we address the stability problem of a noiseless linear time invariant control system over parallel Gaussian channels with feedback. It is shown that the eigenvalues-rate condition which has been proved as a necessary condition, is also sufficient for stability over parallel Gaussian channels. In fact, it is proved that for stabilizing a control system over the parallel Gaussian channels, it suffices that the Shannon channel capacity obtained by the water filling technique is greater than the sum of the logarithm of the unstable eigenvalues magnitude. In order to prove this sufficient condition, we propose a new nonlinear joint source channel coding for parallel Gaussian channels by which the initial state is transmitted through communication steps. This coding scheme with a linear control policy results in the stability of the system under the eigenvalues-rate condition. Hence, the proposed encoder, decoder and controller are efficient for this problem.
2019-02-22
Nie, J., Tang, H., Wei, J..  2018.  Analysis on Convergence of Stochastic Processes in Cloud Computing Models. 2018 14th International Conference on Computational Intelligence and Security (CIS). :71-76.
On cloud computing systems consisting of task queuing and resource allocations, it is essential but hard to model and evaluate the global performance. In most of the models, researchers use a stochastic process or several stochastic processes to describe a real system. However, due to the absence of theoretical conclusions of any arbitrary stochastic processes, they approximate the complicated model into simple processes that have mathematical results, such as Markov processes. Our purpose is to give a universal method to deal with common stochastic processes as long as the processes can be expressed in the form of transition matrix. To achieve our purpose, we firstly prove several theorems about the convergence of stochastic matrices to figure out what kind of matrix-defined systems has steady states. Furthermore, we propose two strategies for measuring the rate of convergence which reflects how fast the system would come to its steady state. Finally, we give a method for reducing a stochastic matrix into smaller ones, and perform some experiments to illustrate our strategies in practice.
2019-01-21
Fei, Y., Ning, J., Jiang, W..  2018.  A quantifiable Attack-Defense Trees model for APT attack. 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :2303–2306.
In order to deal with APT(Advanced Persistent Threat) attacks, this paper proposes a quantifiable Attack-Defense Tree model. First, the model gives both attack and defense leaf node a variety of security attributes. And then quantifies the nodes through the analytic hierarchy process. Finally, it analyzes the impact of the defense measures on the attack behavior. Through the application of the model, we can see that the quantifiable Attack-Defense Tree model can well describe the impact of defense measures on attack behavior.
2018-06-07
Araújo, D. R. B., Barros, G. H. P. S. de, Bastos-Filho, C. J. A., Martins-Filho, J. F..  2017.  Surrogate models assisted by neural networks to assess the resilience of networks. 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI). :1–6.

The assessment of networks is frequently accomplished by using time-consuming analysis tools based on simulations. For example, the blocking probability of networks can be estimated by Monte Carlo simulations and the network resilience can be assessed by link or node failure simulations. We propose in this paper to use Artificial Neural Networks (ANN) to predict the robustness of networks based on simple topological metrics to avoid time-consuming failure simulations. We accomplish the training process using supervised learning based on a historical database of networks. We compare the results of our proposal with the outcome provided by targeted and random failures simulations. We show that our approach is faster than failure simulators and the ANN can mimic the same robustness evaluation provide by these simulators. We obtained an average speedup of 300 times.

2018-05-02
Gu, P., Khatoun, R., Begriche, Y., Serhrouchni, A..  2017.  k-Nearest Neighbours classification based Sybil attack detection in Vehicular networks. 2017 Third International Conference on Mobile and Secure Services (MobiSecServ). :1–6.

In Vehicular networks, privacy, especially the vehicles' location privacy is highly concerned. Several pseudonymous based privacy protection mechanisms have been established and standardized in the past few years by IEEE and ETSI. However, vehicular networks are still vulnerable to Sybil attack. In this paper, a Sybil attack detection method based on k-Nearest Neighbours (kNN) classification algorithm is proposed. In this method, vehicles are classified based on the similarity in their driving patterns. Furthermore, the kNN methods' high runtime complexity issue is also optimized. The simulation results show that our detection method can reach a high detection rate while keeping error rate low.

Gu, P., Khatoun, R., Begriche, Y., Serhrouchni, A..  2017.  Support Vector Machine (SVM) Based Sybil Attack Detection in Vehicular Networks. 2017 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.

Vehicular networks have been drawing special atten- tion in recent years, due to its importance in enhancing driving experience and improving road safety in future smart city. In past few years, several security services, based on cryptography, PKI and pseudonymous, have been standardized by IEEE and ETSI. However, vehicular networks are still vulnerable to various attacks, especially Sybil attack. In this paper, a Support Vector Machine (SVM) based Sybil attack detection method is proposed. We present three SVM kernel functions based classifiers to distinguish the malicious nodes from benign ones via evaluating the variance in their Driving Pattern Matrices (DPMs). The effectiveness of our proposed solution is evaluated through extensive simulations based on SUMO simulator and MATLAB. The results show that the proposed detection method can achieve a high detection rate with low error rate even under a dynamic traffic environment.

2018-03-19
Back, J., Kim, J., Lee, C., Park, G., Shim, H..  2017.  Enhancement of Security against Zero Dynamics Attack via Generalized Hold. 2017 IEEE 56th Annual Conference on Decision and Control (CDC). :1350–1355.

Zero dynamics attack is lethal to cyber-physical systems in the sense that it is stealthy and there is no way to detect it. Fortunately, if the given continuous-time physical system is of minimum phase, the effect of the attack is negligible even if it is not detected. However, the situation becomes unfavorable again if one uses digital control by sampling the sensor measurement and using the zero-order-hold for actuation because of the `sampling zeros.' When the continuous-time system has relative degree greater than two and the sampling period is small, the sampled-data system must have unstable zeros (even if the continuous-time system is of minimum phase), so that the cyber-physical system becomes vulnerable to `sampling zero dynamics attack.' In this paper, we begin with its demonstration by a few examples. Then, we present an idea to protect the system by allocating those discrete-time zeros into stable ones. This idea is realized by employing the so-called `generalized hold' which replaces the zero-order-hold.

2017-12-28
Kabi, B., Sahadevan, A. S., Pradhan, T..  2017.  An overflow free fixed-point eigenvalue decomposition algorithm: Case study of dimensionality reduction in hyperspectral images. 2017 Conference on Design and Architectures for Signal and Image Processing (DASIP). :1–9.

We consider the problem of enabling robust range estimation of eigenvalue decomposition (EVD) algorithm for a reliable fixed-point design. The simplicity of fixed-point circuitry has always been so tempting to implement EVD algorithms in fixed-point arithmetic. Working towards an effective fixed-point design, integer bit-width allocation is a significant step which has a crucial impact on accuracy and hardware efficiency. This paper investigates the shortcomings of the existing range estimation methods while deriving bounds for the variables of the EVD algorithm. In light of the circumstances, we introduce a range estimation approach based on vector and matrix norm properties together with a scaling procedure that maintains all the assets of an analytical method. The method could derive robust and tight bounds for the variables of EVD algorithm. The bounds derived using the proposed approach remain same for any input matrix and are also independent of the number of iterations or size of the problem. Some benchmark hyperspectral data sets have been used to evaluate the efficiency of the proposed technique. It was found that by the proposed range estimation approach, all the variables generated during the computation of Jacobi EVD is bounded within ±1.

2017-03-08
Mishra, A., Kumar, K., Rai, S. N., Mittal, V. K..  2015.  Multi-stage face recognition for biometric access. 2015 Annual IEEE India Conference (INDICON). :1–6.

Protecting the privacy of user-identification data is fundamental to protect the information systems from attacks and vulnerabilities. Providing access to such data only to the limited and legitimate users is the key motivation for `Biometrics'. In `Biometric Systems' confirming a user's claim of his/her identity reliably, is more important than focusing on `what he/she really possesses' or `what he/she remembers'. In this paper the use of face image for biometric access is proposed using two multistage face recognition algorithms that employ biometric facial features to validate the user's claim. The proposed algorithms use standard algorithms and classifiers such as EigenFaces, PCA and LDA in stages. Performance evaluation of both proposed algorithms is carried out using two standard datasets, the Extended Yale database and AT&T database. Results using the proposed multi-stage algorithms are better than those using other standard algorithms. Current limitations and possible applications of the proposed algorithms are also discussed along, with further scope of making these robust to pose, illumination and noise variations.

2015-05-06
Jian Sun, Haitao Liao, Upadhyaya, B.R..  2014.  A Robust Functional-Data-Analysis Method for Data Recovery in Multichannel Sensor Systems. Cybernetics, IEEE Transactions on. 44:1420-1431.

Multichannel sensor systems are widely used in condition monitoring for effective failure prevention of critical equipment or processes. However, loss of sensor readings due to malfunctions of sensors and/or communication has long been a hurdle to reliable operations of such integrated systems. Moreover, asynchronous data sampling and/or limited data transmission are usually seen in multiple sensor channels. To reliably perform fault diagnosis and prognosis in such operating environments, a data recovery method based on functional principal component analysis (FPCA) can be utilized. However, traditional FPCA methods are not robust to outliers and their capabilities are limited in recovering signals with strongly skewed distributions (i.e., lack of symmetry). This paper provides a robust data-recovery method based on functional data analysis to enhance the reliability of multichannel sensor systems. The method not only considers the possibly skewed distribution of each channel of signal trajectories, but is also capable of recovering missing data for both individual and correlated sensor channels with asynchronous data that may be sparse as well. In particular, grand median functions, rather than classical grand mean functions, are utilized for robust smoothing of sensor signals. Furthermore, the relationship between the functional scores of two correlated signals is modeled using multivariate functional regression to enhance the overall data-recovery capability. An experimental flow-control loop that mimics the operation of coolant-flow loop in a multimodular integral pressurized water reactor is used to demonstrate the effectiveness and adaptability of the proposed data-recovery method. The computational results illustrate that the proposed method is robust to outliers and more capable than the existing FPCA-based method in terms of the accuracy in recovering strongly skewed signals. In addition, turbofan engine data are also analyzed to verify the capability of the proposed method in recovering non-skewed signals.
 

Jian Sun, Haitao Liao, Upadhyaya, B.R..  2014.  A Robust Functional-Data-Analysis Method for Data Recovery in Multichannel Sensor Systems. Cybernetics, IEEE Transactions on. 44:1420-1431.

Multichannel sensor systems are widely used in condition monitoring for effective failure prevention of critical equipment or processes. However, loss of sensor readings due to malfunctions of sensors and/or communication has long been a hurdle to reliable operations of such integrated systems. Moreover, asynchronous data sampling and/or limited data transmission are usually seen in multiple sensor channels. To reliably perform fault diagnosis and prognosis in such operating environments, a data recovery method based on functional principal component analysis (FPCA) can be utilized. However, traditional FPCA methods are not robust to outliers and their capabilities are limited in recovering signals with strongly skewed distributions (i.e., lack of symmetry). This paper provides a robust data-recovery method based on functional data analysis to enhance the reliability of multichannel sensor systems. The method not only considers the possibly skewed distribution of each channel of signal trajectories, but is also capable of recovering missing data for both individual and correlated sensor channels with asynchronous data that may be sparse as well. In particular, grand median functions, rather than classical grand mean functions, are utilized for robust smoothing of sensor signals. Furthermore, the relationship between the functional scores of two correlated signals is modeled using multivariate functional regression to enhance the overall data-recovery capability. An experimental flow-control loop that mimics the operation of coolant-flow loop in a multimodular integral pressurized water reactor is used to demonstrate the effectiveness and adaptability of the proposed data-recovery method. The computational results illustrate that the proposed method is robust to outliers and more capable than the existing FPCA-based method in terms of the accuracy in recovering strongly skewed signals. In addition, turbofan engine data are also analyzed to verify the capability of the proposed method in recovering non-skewed signals.