Visible to the public Biblio

Found 218 results

Filters: Keyword is power system security  [Clear All Filters]
2020-03-02
Sahu, Abhijeet, Huang, Hao, Davis, Katherine, Zonouz, Saman.  2019.  SCORE: A Security-Oriented Cyber-Physical Optimal Response Engine. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–6.

Automatic optimal response systems are essential for preserving power system resilience and ensuring faster recovery from emergency under cyber compromise. Numerous research works have developed such response engine for cyber and physical system recovery separately. In this paper, we propose a novel cyber-physical decision support system, SCORE, that computes optimal actions considering pure and hybrid cyber-physical states, using Markov Decision Process (MDP). Such an automatic decision making engine can assist power system operators and network administrators to make a faster response to prevent cascading failures and attack escalation respectively. The hybrid nature of the engine makes the reward and state transition model of the MDP unique. Value iteration and policy iteration techniques are used to compute the optimal actions. Tests are performed on three and five substation power systems to recover from attacks that compromise relays to cause transmission line overflow. The paper also analyses the impact of reward and state transition model on computation. Corresponding results verify the efficacy of the proposed engine.

2020-02-18
Lin, Gengshen, Dong, Mianxiong, Ota, Kaoru, Li, Jianhua, Yang, Wu, Wu, Jun.  2019.  Security Function Virtualization Based Moving Target Defense of SDN-Enabled Smart Grid. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.

Software-defined networking (SDN) allows the smart grid to be centrally controlled and managed by decoupling the control plane from the data plane, but it also expands attack surface for attackers. Existing studies about the security of SDN-enabled smart grid (SDSG) mainly focused on static methods such as access control and identity authentication, which is vulnerable to attackers that carefully probe the system. As the attacks become more variable and complex, there is an urgent need for dynamic defense methods. In this paper, we propose a security function virtualization (SFV) based moving target defense of SDSG which makes the attack surface constantly changing. First, we design a dynamic defense mechanism by migrating virtual security function (VSF) instances as the traffic state changes. The centralized SDN controller is re-designed for global status monitoring and migration management. Moreover, we formalize the VSF instances migration problem as an integer nonlinear programming problem with multiple constraints and design a pre-migration algorithm to prevent VSF instances' resources from being exhausted. Simulation results indicate the feasibility of the proposed scheme.

2020-02-17
Liu, Xiaobao, Wu, Qinfang, Sun, Jinhua, Xu, Xia, Wen, Yifan.  2019.  Research on Self-Healing Technology for Faults of Intelligent Distribution Network Communication System. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1404–1408.
The intelligent power communication network is closely connected with the power system, and carries the data transmission and intelligent decision in a series of key services in the power system, which is an important guarantee for the smart power service. The self-healing control (SHC) of the distribution network monitors the data of each device and node in the distribution network in real time, simulates and analyzes the data, and predicts the hidden dangers in the normal operation of the distribution network. Control, control strategies such as correcting recovery and troubleshooting when abnormal or fault conditions occur, reducing human intervention, enabling the distribution network to change from abnormal operating state to normal operating state in time, preventing event expansion and reducing the impact of faults on the grid and users.
Zou, Zhenwan, Hou, Yingsa, Yang, Huiting, Li, Mingxuan, Wang, Bin, Guo, Qingrui.  2019.  Research and Implementation of Intelligent Substation Information Security Risk Assessment Tool. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). :1306–1310.

In order to improve the information security level of intelligent substation, this paper proposes an intelligent substation information security assessment tool through the research and analysis of intelligent substation information security risk and information security assessment method, and proves that the tool can effectively detect it. It is of great significance to carry out research on industrial control systems, especially intelligent substation information security.

Moquin, S. J., Kim, SangYun, Blair, Nicholas, Farnell, Chris, Di, Jia, Mantooth, H. Alan.  2019.  Enhanced Uptime and Firmware Cybersecurity for Grid-Connected Power Electronics. 2019 IEEE CyberPELS (CyberPELS). :1–6.
A distributed energy resource prototype is used to show cybersecurity best practices. These best practices include straightforward security techniques, such as encrypted serial communication. The best practices include more sophisticated security techniques, such as a method to evaluate and respond to firmware integrity at run-time. The prototype uses embedded Linux, a hardware-assisted monitor, one or more digital signal processors, and grid-connected power electronics. Security features to protect communication, firmware, power flow, and hardware are developed. The firmware run-time integrity security is presently evaluated, and shown to maintain power electronics uptime during firmware updating. The firmware run-time security feature can be extended to allow software rejuvenation, multi-mission controls, and greater flexibility and security in controls.
Ullah, N., Ali, S. M., Khan, B., Mehmood, C. A., Anwar, S. M., Majid, M., Farid, U., Nawaz, M. A., Ullah, Z..  2019.  Energy Efficiency: Digital Signal Processing Interactions Within Smart Grid. 2019 International Conference on Engineering and Emerging Technologies (ICEET). :1–6.
Smart Grid (SG) is regarded as complex electrical power system due to massive penetration of Renewable Energy Resources and Distribution Generations. The implementation of adjustable speed drives, advance power electronic devices, and electric arc furnaces are incorporated in SG (the transition from conventional power system). Moreover, SG is an advance, automated, controlled, efficient, digital, and intelligent system that ensures pertinent benefits, such as: (a) consumer empowerment, (b) advanced communication infrastructure, (c) user-friendly system, and (d) supports bi-directional power flow. Digital Signal Processing (DSP) is key tool for SG deployment and provides key solutions to a vast array of complex SG challenges. This research provides a comprehensive study on DSP interactions within SG. The prominent challenges posed by conventional grid, such as: (a) monitoring and control, (b) Electric Vehicles infrastructure, (c) cyber data injection attack, (d) Demand Response management and (e) cyber data injection attack are thoroughly investigated in this research.
Ionita, Drd. Irene.  2019.  Cybersecurity concerns on real time monitoring in electrical transmission and distribution systems (SMART GRIDS). 2019 54th International Universities Power Engineering Conference (UPEC). :1–4.
The virtual world does not observe national borders, has no uniform legal system, and does not have a common perception of security and privacy issues. It is however, relatively homogenous in terms of technology.A cyberattack on an energy delivery system can have significant impacts on the availability of a system to perform critical functions as well as the integrity of the system and the confidentiality of sensitive information.
Hiller, Jens, Komanns, Karsten, Dahlmanns, Markus, Wehrle, Klaus.  2019.  Regaining Insight and Control on SMGW-based Secure Communication in Smart Grids. 2019 AEIT International Annual Conference (AEIT). :1–6.
Smart Grids require extensive communication to enable safe and stable energy supply in the age of decentralized and dynamic energy production and consumption. To protect the communication in this critical infrastructure, public authorities mandate smart meter gateways (SMGWs) to be in control of the communication security. To this end, the SMGW intercepts all inbound and outbound communication of its premise, e.g., a factory or smart home, and forwards it on secure channels that the SMGW established itself. However, using the SMGW as proxy, local devices can neither review the security of these remote connections established by the SMGW nor enforce higher security guarantees than established by the all in one configuration of the SMGW which does not allow for use case-specific security settings. We present mechanisms that enable local devices to regain this insight and control over the full connection, i.e., up to the final receiver, while retaining the SMGW's ability to ensure a suitable security level. Our evaluation shows modest computation and transmission overheads for this increased security in the critical smart grid infrastructure.
Ying, Huan, Ouyang, Xuan, Miao, Siwei, Cheng, Yushi.  2019.  Power Message Generation in Smart Grid via Generative Adversarial Network. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :790–793.
As the next generation of the power system, smart grid develops towards automated and intellectualized. Along with the benefits brought by smart grids, e.g., improved energy conversion rate, power utilization rate, and power supply quality, are the security challenges. One of the most important issues in smart grids is to ensure reliable communication between the secondary equipment. The state-of-art method to ensure smart grid security is to detect cyber attacks by deep learning. However, due to the small number of negative samples, the performance of the detection system is limited. In this paper, we propose a novel approach that utilizes the Generative Adversarial Network (GAN) to generate abundant negative samples, which helps to improve the performance of the state-of-art detection system. The evaluation results demonstrate that the proposed method can effectively improve the performance of the detection system by 4%.
Al-Eryani, Yasser, Baroudi, Uthman.  2019.  An Investigation on Detecting Bad Data Injection Attack in Smart Grid. 2019 International Conference on Computer and Information Sciences (ICCIS). :1–4.
Security and consistency of smart grids is one of the main issues in the design and maintenance of highly controlled and monitored new power grids. Bad data injection attack could lead to disasters such as power system outage, or huge economical losses. In many attack scenarios, the attacker can come up with new attack strategies that couldn't be detected by the traditional bad data detection methods. Adaptive Partitioning State Estimation (APSE) method [3] has been proposed recently to combat such attacks. In this work, we evaluate and compare with a traditional method. The main idea of APSE is to increase the sensitivity of the chi-square test by partitioning the large grids into small ones and apply the test on each partition individually and repeat this procedure until the faulty node is located. Our simulation findings using MATPOWER program show that the method is not consistent where it is sensitive the systems size and the location of faulty nodes as well.
Li, Zhifeng, Li, Yintao, Lin, Peng.  2019.  The Security Evaluation of Big Data Research for Smart Grid. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :1055–1059.

The technological development of the energy sector also produced complex data. In this study, the relationship between smart grid and big data approaches have been investigated. After analyzing which areas of the smart grid system use big data technologies and technologies, big data technologies for detecting smart grid attacks have received attention. Big data analytics can produce efficient solutions and it is especially important to choose which algorithms and metrics to use. For this reason, an application prototype has been proposed that uses a big data method to detect attacks on the smart grid. The algorithm with high accuracy was determined to be 92% for random forests and 87% for decision trees.

Paul, Shuva, Ni, Zhen.  2019.  A Strategic Analysis of Attacker-Defender Repeated Game in Smart Grid Security. 2019 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.

Traditional power grid security schemes are being replaced by highly advanced and efficient smart security schemes due to the advancement in grid structure and inclusion of cyber control and monitoring tools. Smart attackers create physical, cyber, or cyber-physical attacks to gain the access of the power system and manipulate/override system status, measurements and commands. In this paper, we formulate the environment for the attacker-defender interaction in the smart power grid. We provide a strategic analysis of the attacker-defender strategic interaction using a game theoretic approach. We apply repeated game to formulate the problem, implement it in the power system, and investigate for optimal strategic behavior in terms of mixed strategies of the players. In order to define the utility or cost function for the game payoffs calculation, generation power is used. Attack-defense budget is also incorporated with the attacker-defender repeated game to reflect a more realistic scenario. The proposed game model is validated using IEEE 39 bus benchmark system. A comparison between the proposed game model and the all monitoring model is provided to validate the observations.

Kumar, Sanjeev, Kumar, Harsh, Gunnam, Ganesh Reddy.  2019.  Security Integrity of Data Collection from Smart Electric Meter under a Cyber Attack. 2019 2nd International Conference on Data Intelligence and Security (ICDIS). :9–13.
Cyber security has been a top concern for electric power companies deploying smart meters and smart grid technology. Despite the well-known advantages of smart grid technology and the smart meters, it is not yet very clear how and to what extent, the Cyber attacks can hamper the operation of the smart meters, and remote data collections regarding the power usage from the customer sites. To understand these questions, we conducted experiments in a controlled lab environment of our cyber security lab to test a commercial grade smart meter. In this paper, we present results of our investigation for a commercial grade smart meter and measure the operation integrity of the smart meter under cyber-attack conditions.
Aranha, Helder, Masi, Massimiliano, Pavleska, Tanja, Sellitto, Giovanni Paolo.  2019.  Enabling Security-by-Design in Smart Grids: An Architecture-Based Approach. 2019 15th European Dependable Computing Conference (EDCC). :177–179.

Energy Distribution Grids are considered critical infrastructure, hence the Distribution System Operators (DSOs) have developed sophisticated engineering practices to improve their resilience. Over the last years, due to the "Smart Grid" evolution, this infrastructure has become a distributed system where prosumers (the consumers who produce and share surplus energy through the grid) can plug in distributed energy resources (DERs) and manage a bi-directional flow of data and power enabled by an advanced IT and control infrastructure. This introduces new challenges, as the prosumers possess neither the skills nor the knowledge to assess the risk or secure the environment from cyber-threats. We propose a simple and usable approach based on the Reference Model of Information Assurance & Security (RMIAS), to support the prosumers in the selection of cybesecurity measures. The purpose is to reduce the risk of being directly targeted and to establish collective responsibility among prosumers as grid gatekeepers. The framework moves from a simple risk analysis based on security goals to providing guidelines for the users for adoption of adequate security countermeasures. One of the greatest advantages of the approach is that it does not constrain the user to a specific threat model.

2020-02-10
Lakshminarayana, Subhash, Belmega, E. Veronica, Poor, H. Vincent.  2019.  Moving-Target Defense for Detecting Coordinated Cyber-Physical Attacks in Power Grids. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–7.
This work proposes a moving target defense (MTD) strategy to detect coordinated cyber-physical attacks (CCPAs) against power grids. A CCPA consists of a physical attack, such as disconnecting a transmission line, followed by a coordinated cyber attack that injects false data into the sensor measurements to mask the effects of the physical attack. Such attacks can lead to undetectable line outages and cause significant damage to the grid. The main idea of the proposed approach is to invalidate the knowledge that the attackers use to mask the effects of the physical attack by actively perturbing the grid's transmission line reactances using distributed flexible AC transmission system (D-FACTS) devices. We identify the MTD design criteria in this context to thwart CCPAs. The proposed MTD design consists of two parts. First, we identify the subset of links for D-FACTS device deployment that enables the defender to detect CCPAs against any link in the system. Then, in order to minimize the defense cost during the system's operational time, we use a game-theoretic approach to identify the best subset of links (within the D-FACTS deployment set) to perturb which will provide adequate protection. Extensive simulations performed using the MATPOWER simulator on IEEE bus systems verify the effectiveness of our approach in detecting CCPAs and reducing the operator's defense cost.
Niddodi, Chaitra, Lin, Shanny, Mohan, Sibin, Zhu, Hao.  2019.  Secure Integration of Electric Vehicles with the Power Grid. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–7.
This paper focuses on the secure integration of distributed energy resources (DERs), especially pluggable electric vehicles (EVs), with the power grid. We consider the vehicle-to-grid (V2G) system where EVs are connected to the power grid through an `aggregator' In this paper, we propose a novel Cyber-Physical Anomaly Detection Engine that monitors system behavior and detects anomalies almost instantaneously (worst case inspection time for a packet is 0.165 seconds1). This detection engine ensures that the critical power grid component (viz., aggregator) remains secure by monitoring (a) cyber messages for various state changes and data constraints along with (b) power data on the V2G cyber network using power measurements from sensors on the physical/power distribution network. Since the V2G system is time-sensitive, the anomaly detection engine also monitors the timing requirements of the protocol messages to enhance the safety of the aggregator. To the best of our knowledge, this is the first piece of work that combines (a) the EV charging/discharging protocols, the (b) cyber network and (c) power measurements from physical network to detect intrusions in the EV to power grid system.1Minimum latency on V2G network is 2 seconds.
Muka, Romina, Haugli, Fredrik Bakkevig, Vefsnmo, Hanne, Heegaard, Poul E..  2019.  Information Inconsistencies in Smart Distribution Grids under Different Failure Causes modelled by Stochastic Activity Networks. 2019 AEIT International Annual Conference (AEIT). :1–6.
The ongoing digitalization of the power distribution grid will improve the operational support and automation which is believed to increase the system reliability. However, in an integrated and interdependent cyber-physical system, new threats appear which must be understood and dealt with. Of particular concern, in this paper, is the causes of an inconsistent view between the physical system (here power grid) and the Information and Communication Technology (ICT) system (here Distribution Management System). In this paper we align the taxonomy used in International Electrotechnical Commission (power eng.) and International Federation for Information Processing (ICT community), define a metric for inconsistencies, and present a modelling approach using Stochastic Activity Networks to assess the consequences of inconsistencies. The feasibility of the approach is demonstrated in a simple use case.
Niu, Xiangyu, Li, Jiangnan, Sun, Jinyuan, Tomsovic, Kevin.  2019.  Dynamic Detection of False Data Injection Attack in Smart Grid using Deep Learning. 2019 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–6.
Modern advances in sensor, computing, and communication technologies enable various smart grid applications. The heavy dependence on communication technology has highlighted the vulnerability of the electricity grid to false data injection (FDI) attacks that can bypass bad data detection mechanisms. Existing mitigation in the power system either focus on redundant measurements or protect a set of basic measurements. These methods make specific assumptions about FDI attacks, which are often restrictive and inadequate to deal with modern cyber threats. In the proposed approach, a deep learning based framework is used to detect injected data measurement. Our time-series anomaly detector adopts a Convolutional Neural Network (CNN) and a Long Short Term Memory (LSTM) network. To effectively estimate system variables, our approach observes both data measurements and network level features to jointly learn system states. The proposed system is tested on IEEE 39-bus system. Experimental analysis shows that the deep learning algorithm can identify anomalies which cannot be detected by traditional state estimation bad data detection.
Singh, Neeraj Kumar, Mahajan, Vasundhara.  2019.  Fuzzy Logic for Reducing Data Loss during Cyber Intrusion in Smart Grid Wireless Network. 2019 IEEE Student Conference on Research and Development (SCOReD). :192–197.
Smart grid consists of smart devices to control, record and analyze the grid power flow. All these devices belong to the latest technology, which is used to interact through the wireless network making the grid communication network vulnerable to cyber attack. This paper deals with a novel approach using altering the Internet Protocol (IP) address of the smart grid communication network using fuzzy logic according to the degree of node. Through graph theory approach Wireless Communication Network (WCN) is designed by considering each node of the system as a smart sensor. In this each node communicates with other nearby nodes for exchange of data. Whenever there is cyber intrusion the WCN change its IP using proposed fuzzy rules, where higher degree nodes are given the preference to change first with extreme IP available in the system. Using the proposed algorithm, different IEEE test systems are simulated and compared with existing Dynamic Host Configuration Protocol (DHCP). The fuzzy logic approach reduces the data loss and improves the system response time.
Majumdar, R., Gayen, P. K., Mondal, S., Sadhukhan, A., Das, P. K., Kushary, I..  2019.  A Cyber Communication Package in the Application of Grid Tied Solar System. 2019 Devices for Integrated Circuit (DevIC). :146–150.

In this paper, development of cyber communication package in the application of grid connected solar system has been presented. Here, implemented communication methodology supports communication process with reduced latency, high security arrangement with various degrees of freedom. Faithful transferring of various electrical data for the purpose of measurement, monitoring and controlling actions depend on the bidirectional communication strategy. Thus, real-time communication of data through cyber network has been emphasized in this paper. The C\# language based coding is done to develop the communication program. The notable features of proposed communication process are reduction of latency during data exchange by usage of advanced encryption standard (AES) algorithm, tightening of cyber security arrangement by implementing secured socket layer (SSL) and Rivest, Shamir and Adleman (RSA) algorithms. Various real-time experiments using internet connected computers have been done to verify the usability of the proposed communication concept along with its notable features in the application.

2020-01-21
Dong, Xiao, Li, Qianmu, Hou, Jun, Zhang, Jing, Liu, Yaozong.  2019.  Security Risk Control of Water Power Generation Industrial Control Network Based on Attack and Defense Map. 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService). :232–236.

With the latest development of hydroelectric power generation system, the industrial control network system of hydroelectric power generation has undergone the transformation from the dedicated network, using proprietary protocols to an increasingly open network, adopting standard protocols, and increasing integration with hydroelectric power generation system. It generally believed that with the improvement of the smart grid, the future hydroelectric power generation system will rely more on the powerful network system. The general application of standardized communication protocol and intelligent electronic equipment in industrial control network provides a technical guarantee for realizing the intellectualization of hydroelectric power generation system but also brings about the network security problems that cannot be ignored. In order to solve the vulnerability of the system, we analyze and quantitatively evaluate the industrial control network of hydropower generation as a whole, and propose a set of attack and defense strategies. The method of vulnerability assessment with high diversity score proposed by us avoids the indifference of different vulnerability score to the greatest extent. At the same time, we propose an optimal attack and defense decision algorithm, which generates the optimal attack and defense strategy. The work of this paper can distinguish the actual hazards of vulnerable points more effectively.

Abdelghani, TSCHROUB.  2019.  Industrial Control Systems (Ics) Security in Power Transmission Network. 2019 Algerian Large Electrical Network Conference (CAGRE). :1–4.

The goal of this document is to provide knowledge of Security for Industrial Control Systems (ICS,) such as supervisory control and data acquisition (SCADA) which is implemented in power transmission network, power stations, power distribution grids and other big infrastructures that affect large number of persons and security of nations. A distinction between IT and ICS security is given to make a difference between the two disciplines. In order to avoid intrusion and destruction of industrials plants, some recommendations are given to preserve their security.

Gao, Peng, Yang, Ruxia, Shi, Congcong, Zhang, Xiaojian.  2019.  Research on Security Protection Technology System of Power Internet of Things. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). :1772–1776.

With the rapid development of Internet of Things applications, the power Internet of Things technologies and applications covering the various production links of the power grid "transmission, transmission, transformation, distribution and use" are becoming more and more popular, and the terminal, network and application security risks brought by them are receiving more and more attention. Combined with the architecture and risk of power Internet of Things, this paper first proposes the overall security protection technology system and strategy for power Internet of Things; then analyzes terminal identity authentication and authority control, edge area autonomy and data transmission protection, and application layer cloud fog security management. And the whole process real-time security monitoring; Finally, through the analysis of security risks and protection, the technical difficulties and directions for the security protection of the Internet of Things are proposed.

2020-01-20
He, Zecheng, Raghavan, Aswin, Hu, Guangyuan, Chai, Sek, Lee, Ruby.  2019.  Power-Grid Controller Anomaly Detection with Enhanced Temporal Deep Learning. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :160–167.
Controllers of security-critical cyber-physical systems, like the power grid, are a very important class of computer systems. Attacks against the control code of a power-grid system, especially zero-day attacks, can be catastrophic. Earlier detection of the anomalies can prevent further damage. However, detecting zero-day attacks is extremely challenging because they have no known code and have unknown behavior. Furthermore, if data collected from the controller is transferred to a server through networks for analysis and detection of anomalous behavior, this creates a very large attack surface and also delays detection. In order to address this problem, we propose Reconstruction Error Distribution (RED) of Hardware Performance Counters (HPCs), and a data-driven defense system based on it. Specifically, we first train a temporal deep learning model, using only normal HPC readings from legitimate processes that run daily in these power-grid systems, to model the normal behavior of the power-grid controller. Then, we run this model using real-time data from commonly available HPCs. We use the proposed RED to enhance the temporal deep learning detection of anomalous behavior, by estimating distribution deviations from the normal behavior with an effective statistical test. Experimental results on a real power-grid controller show that we can detect anomalous behavior with high accuracy (\textbackslashtextgreater99.9%), nearly zero false positives and short (\textbackslashtextless; 360ms) latency.
2019-12-30
Iqbal, Maryam, Iqbal, Mohammad Ayman.  2019.  Attacks Due to False Data Injection in Smart Grids: Detection Protection. 2019 1st Global Power, Energy and Communication Conference (GPECOM). :451-455.

As opposed to a traditional power grid, a smart grid can help utilities to save energy and therefore reduce the cost of operation. It also increases reliability of the system In smart grids the quality of monitoring and control can be adequately improved by incorporating computing and intelligent communication knowledge. However, this exposes the system to false data injection (FDI) attacks and the system becomes vulnerable to intrusions. Therefore, it is important to detect such false data injection attacks and provide an algorithm for the protection of system against such attacks. In this paper a comparison between three FDI detection methods has been made. An H2 control method has then been proposed to detect and control the false data injection on a 12th order model of a smart grid. Disturbances and uncertainties were added to the system and the results show the system to be fully controllable. This paper shows the implementation of a feedback controller to fully detect and mitigate the false data injection attacks. The controller can be incorporated in real life smart grid operations.