Biblio
With the advent of technology and owing to mankind’s reliance on technology, it is of utmost importance to safeguard people’s data and their identity. Biometrics have for long played an important role in providing that layer of security ranging from small scale uses such as house locks to enterprises using them for confidentiality purposes. In this paper we will provide an insight into behavioral biometrics that rely on identifying and measuring human characteristics or behavior. We review different types of behavioral parameters such as keystroke dynamics, gait, footstep pressure signals and more.
User Authentication is a difficult problem yet to be addressed accurately. Little or no work is reported in literature dealing with clustering-based anomaly detection techniques for user authentication for keystroke data. Therefore, in this paper, Modified Differential Evolution (MDE) based subspace anomaly detection technique is proposed for user authentication in the context of behavioral biometrics using keystroke dynamics features. Thus, user authentication is posed as an anomaly detection problem. Anomalies in CMU's keystroke dynamics dataset are identified using subspace-based and distance-based techniques. It is observed that, among the proposed techniques, MDE based subspace anomaly detection technique yielded the highest Area Under ROC Curve (AUC) for user authentication problem. We also performed a Wilcoxon Signed Rank statistical test to corroborate our results statistically.
Keystroke Dynamics is the study of typing patterns and rhythm for personal identification and traits. Keystrokes may be analysed as fixed text such as passwords or as continuous typed text such as documents. This paper reviews different classification metrics for continuous text, such as the A and R metrics, Canberra, Manhattan and Euclidean and introduces a variant of the Minkowski distance. To test the metrics, we adopted a substantial dataset containing 239 thousand records acquired under real, harsh, and unidealised conditions. We propose a new parameter for the Minkowski metric, and we reinforce another for the A metric, as initially stated by its authors.
In the modern day and age, credential based authentication systems no longer provide the level of security that many organisations and their services require. The level of trust in passwords has plummeted in recent years, with waves of cyber attacks predicated on compromised and stolen credentials. This method of authentication is also heavily reliant on the individual user's choice of password. There is the potential to build levels of security on top of credential based authentication systems, using a risk based approach, which preserves the seamless authentication experience for the end user. One method of adding this security to a risk based authentication framework, is keystroke dynamics. Monitoring the behaviour of the users and how they type, produces a type of digital signature which is unique to that individual. Learning this behaviour allows dynamic flags to be applied to anomalous typing patterns that are produced by attackers using stolen credentials, as a potential risk of fraud. Methods from statistics and machine learning have been explored to try and implement such solutions. This paper will look at an Autoencoder model for learning the keystroke dynamics of specific users. The results from this paper show an improvement over the traditional tried and tested statistical approaches with an Equal Error Rate of 6.51%, with the additional benefits of relatively low training times and less reliance on feature engineering.
Keystroke dynamics study the way in which users input text via their keyboards, which is unique to each individual, and can form a component of a behavioral biometric system to improve existing account security. Keystroke dynamics systems on free-text data use n-graphs that measure the timing between consecutive keystrokes to distinguish between users. Many algorithms require 500, 1,000, or more keystrokes to achieve EERs of below 10%. In this paper, we propose an instance-based graph comparison algorithm to reduce the number of keystrokes required to authenticate users. Commonly used features such as monographs and digraphs are investigated. Feature importance is determined and used to construct a fused classifier. Detection error tradeoff (DET) curves are produced with different numbers of keystrokes. The fused classifier outperforms the state-of-the-art with EERs of 7.9%, 5.7%, 3.4%, and 2.7% for test samples of 50, 100, 200, and 500 keystrokes.
One of the basic behavioural biometric methods is keystroke element. Being less expensive and not requiring any extra bit of equipment is the main advantage of keystroke element. The primary concentration of this paper is to give an inevitable review of behavioural biometrics strategies, measurements and different methodologies and difficulties and future bearings specially of keystroke analysis and mouse dynamics. Keystrokes elements frameworks utilize insights, e.g. time between keystrokes, word decisions, word mixes, general speed of writing and so on. Mouse Dynamics is termed as the course of actions captured from the moving mouse by an individual when interacting with a GUI. These are representative factors which may be called mouse dynamics signature of an individual, and may be used for verification of identity of an individual. In this paper, we compare the authentication system based on keystroke dynamics and mouse dynamics.
keystroke dynamics authenticates the system user by analyzing his typing rhythm. Given that each of us has his own typing rhythm and that the method is based on the keyboard makes it available in all computer machines, these two reasons (uniqueness and reduced cost) have made the method very solicit by administrators of security. In addition, the researchers used the method in different fields that are listed later in the paper.
Research on keystroke dynamics has the good potential to offer continuous authentication that complements conventional authentication methods in combating insider threats and identity theft before more harm can be done to the genuine users. Unfortunately, the large amount of data required by free-text keystroke authentication often contain personally identifiable information, or PII, and personally sensitive information, such as a user's first name and last name, username and password for an account, bank card numbers, and social security numbers. As a result, there are privacy risks associated with keystroke data that must be mitigated before they are shared with other researchers. We conduct a systematic study to remove PII's from a recent large keystroke dataset. We find substantial amounts of PII's from the dataset, including names, usernames and passwords, social security numbers, and bank card numbers, which, if leaked, may lead to various harms to the user, including personal embarrassment, blackmails, financial loss, and identity theft. We thoroughly evaluate the effectiveness of our detection program for each kind of PII. We demonstrate that our PII detection program can achieve near perfect recall at the expense of losing some useful information (lower precision). Finally, we demonstrate that the removal of PII's from the original dataset has only negligible impact on the detection error tradeoff of the free-text authentication algorithm by Gunetti and Picardi. We hope that this experience report will be useful in informing the design of privacy removal in future keystroke dynamics based user authentication systems.
eAssessment uses technology to support online evaluation of students' knowledge and skills. However, challenging problems must be addressed such as trustworthiness among students and teachers in blended and online settings. The TeSLA system proposes an innovative solution to guarantee correct authentication of students and to prove the authorship of their assessment tasks. Technologically, the system is based on the integration of five instruments: face recognition, voice recognition, keystroke dynamics, forensic analysis, and plagiarism. The paper aims to analyze and compare the results achieved after the second pilot performed in an online and a blended university revealing the realization of trust-driven solutions for eAssessment.
The use of typing biometrics—the characteristic typing patterns of individual keyboard users—has been studied extensively in the context of enhancing multi-factor authentication services. The key starting point for such work has been the collection of high-fidelity local timing data, and the key (implicit) security assumption has been that such biometrics could not be obtained by other means. We show that the latter assumption to be false, and that it is entirely feasible to obtain useful typing biometric signatures from third-party timing logs. Specifically, we show that the logs produced by realtime collaboration services during their normal operation are of sufficient fidelity to successfully impersonate a user using remote data only. Since the logs are routinely shared as a byproduct of the services' operation, this creates an entirely new avenue of attack that few users would be aware of. As a proof of concept, we construct successful biometric attacks using only the log-based structure (complete editing history) of a shared Google Docs, or Zoho Writer, document which is readily available to all contributing parties. Using the largest available public data set of typing biometrics, we are able to create successful forgeries 100% of the time against a commercial biometric service. Our results suggest that typing biometrics are not robust against practical forgeries, and should not be given the same weight as other authentication factors. Another important implication is that the routine collection of detailed timing logs by various online services also inherently (and implicitly) contains biometrics. This not only raises obvious privacy concerns, but may also undermine the effectiveness of network anonymization solutions, such as ToR, when used with existing services.
As the development of technology increases, the security risk also increases. This has affected most organizations, irrespective of size, as they depend on the increasingly pervasive technology to perform their daily tasks. However, the dependency on technology has introduced diverse security vulnerabilities in organizations which requires a reliable preparedness for probable forensic investigation of the unauthorized incident. Keystroke dynamics is one of the cost-effective methods for collecting potential digital evidence. This paper presents a keystroke pattern analysis technique suitable for the collection of complementary potential digital evidence for forensic readiness. The proposition introduced a technique that relies on the extraction of reliable behavioral signature from user activity. Experimental validation of the proposition demonstrates the effectiveness of proposition using a multi-scheme classifier. The overall goal is to have forensically sound and admissible keystroke evidence that could be presented during the forensic investigation to minimize the costs and time of the investigation.
The paper considers an issues of protecting data from unauthorized access by users' authentication through keystroke dynamics. It proposes to use keyboard pressure parameters in combination with time characteristics of keystrokes to identify a user. The authors designed a keyboard with special sensors that allow recording complementary parameters. The paper presents an estimation of the information value for these new characteristics and error probabilities of users' identification based on the perceptron algorithms, Bayes' rule and quadratic form networks. The best result is the following: 20 users are identified and the error rate is 0.6%.
Web identifiers such as usernames, hashtags, and domain names serve important roles in online navigation, communication, and community building. Therefore the entities that choose such names must ensure that end-users are able to quickly and accurately enter them in applications. Uniqueness requirements, a desire for short strings, and an absence of delimiters often constrain this name selection process. To gain perspective on the speed and correctness of name entry, we crowdsource the typing of 51,000+ web identifiers. Surface level analysis reveals, for example, that typing speed is generally a linear function of identifier length. Examining keystroke dynamics at finer granularity proves more interesting. First, we identify features predictive of typing time/accuracy, finding: (1) the commonality of character bi-grams inside a name, and (2) the degree of ambiguity when tokenizing a name - to be most indicative. A machine-learning model built over 10 such features exhibits moderate predictive capability. Second, we evaluate our hypothesis that users subconsciously insert pauses in their typing cadence where text delimiters (e.g., spaces) would exist, if permitted. The data generally supports this claim, suggesting its application alongside algorithmic tokenization methods, and possibly in name suggestion frameworks.
In this paper, we propose a novel method, based on keystroke dynamics, to distinguish between fake and truthful personal information written via a computer keyboard. Our method does not need any prior knowledge about the user who is providing data. To our knowledge, this is the first work that associates the typing human behavior with the production of lies regarding personal information. Via experimental analysis involving 190 subjects, we assess that this method is able to distinguish between truth and lies on specific types of autobiographical information, with an accuracy higher than 75%. Specifically, for information usually required in online registration forms (e.g., name, surname and email), the typing behavior diverged significantly between truthful or untruthful answers. According to our results, keystroke analysis could have a great potential in detecting the veracity of self-declared information, and it could be applied to a large number of practical scenarios requiring users to input personal data remotely via keyboard.
In this paper, an innovative approach to keyboard user monitoring (authentication), using keyboard dynamics and founded on the concept of time series analysis, is presented. The work is motivated by the need for robust authentication mechanisms in the context of on-line assessment such as those featured in many online learning platforms. Four analysis mechanisms are considered: analysis of keystroke time series in their raw form (without any translation), analysis consequent to translating the time series into a more compact form using either the Discrete Fourier Transform or the Discrete Wavelet Transform, and a "benchmark" feature vector representation of the form typically used in previous related work. All four mechanisms are fully described and evaluated. A best authentication accuracy of 99% was obtained using the wavelet transform.
Biometrics has become ubiquitous and spurred common use in many authentication mechanisms. Keystroke dynamics is a form of behavioral biometrics that can be used for user authentication while actively working at a terminal. The proposed mechanisms involve digraph, trigraph and n-graph analysis as separate solutions or suggest a fusion mechanism with certain limitations. However, deep learning can be used as a unifying machine learning technique that consolidates the power of all different features since it has shown tremendous results in image recognition and natural language processing. In this paper, we investigate the applicability of deep learning on three different datasets by using convolutional neural networks and Gaussian data augmentation technique. We achieve 10% higher accuracy and 7.3% lower equal error rate (EER) than existing methods. Also, our sensitivity analysis indicates that the convolution operation and the fully-connected layer are the most prominent factors that affect the accuracy and the convergence rate of a network trained with keystroke data.