Visible to the public Biblio

Found 139 results

Filters: Keyword is IDS  [Clear All Filters]
2023-08-16
Reis, Sofia, Abreu, Rui, Erdogmus, Hakan, Păsăreanu, Corina.  2022.  SECOM: Towards a convention for security commit messages. 2022 IEEE/ACM 19th International Conference on Mining Software Repositories (MSR). :764—765.
One way to detect and assess software vulnerabilities is by extracting security-related information from commit messages. Automating the detection and assessment of vulnerabilities upon security commit messages is still challenging due to the lack of structured and clear messages. We created a convention, called SECOM, for security commit messages that structure and include bits of security-related information that are essential for detecting and assessing vulnerabilities for both humans and tools. The full convention and details are available here: https://tqrg.github.io/secom/.
Kara, Orhun.  2022.  How to Exploit Biham-Keller ID Characteristic to Minimize Data. 2022 15th International Conference on Information Security and Cryptography (ISCTURKEY). :44—48.
In this work, we examine the following question: How can we improve the best data complexity among the impossible differential (ID) attacks on AES? One of the most efficient attacks on AES are ID attacks. We have seen that the Biham-Keller ID characteristics are frequently used in these ID attacks. We observe the following fact: The probability that a given pair with a wrong key produce an ID characteristic is closely correlated to the data usage negatively. So, we maximize this probability by exploiting a Biham-Keller ID characteristic in a different manner than the other attacks. As a result, we mount an ID attack on 7-round AES-192 and obtain the best data requirement among all the ID attacks on 7-round AES. We make use of only 2$^\textrm58$ chosen plaintexts.
Liu, Lisa, Engelen, Gints, Lynar, Timothy, Essam, Daryl, Joosen, Wouter.  2022.  Error Prevalence in NIDS datasets: A Case Study on CIC-IDS-2017 and CSE-CIC-IDS-2018. 2022 IEEE Conference on Communications and Network Security (CNS). :254—262.
Benchmark datasets are heavily depended upon by the research community to validate theoretical findings and track progression in the state-of-the-art. NIDS dataset creation presents numerous challenges on account of the volume, heterogeneity, and complexity of network traffic, making the process labor intensive, and thus, prone to error. This paper provides a critical review of CIC-IDS-2017 and CIC-CSE-IDS-2018, datasets which have seen extensive usage in the NIDS literature, and are currently considered primary benchmarking datasets for NIDS. We report a large number of previously undocumented errors throughout the dataset creation lifecycle, including in attack orchestration, feature generation, documentation, and labeling. The errors destabilize the results and challenge the findings of numerous publications that have relied on it as a benchmark. We demonstrate the implications of these errors through several experiments. We provide comprehensive documentation to summarize the discovery of these issues, as well as a fully-recreated dataset, with labeling logic that has been reverse-engineered, corrected, and made publicly available for the first time. We demonstrate the implications of dataset errors through a series of experiments. The findings serve to remind the research community of common pitfalls with dataset creation processes, and of the need to be vigilant when adopting new datasets. Lastly, we strongly recommend the release of labeling logic for any dataset released, to ensure full transparency.
Varma, Ch. Phaneendra, Babu, G. Ramesh, Sree, Pokkuluri Kiran, Sai, N. Raghavendra.  2022.  Usage of Classifier Ensemble for Security Enrichment in IDS. 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS). :420—425.
The success of the web and the consequent rise in data sharing have made network security a challenge. Attackers from all around the world target PC installations. When an attack is successful, an electronic device's security is jeopardised. The intrusion implicitly includes any sort of behaviours that purport to think twice about the respectability, secrecy, or accessibility of an asset. Information is shielded from unauthorised clients' scrutiny by the integrity of a certain foundation. Accessibility refers to the framework that gives users of the framework true access to information. The word "classification" implies that data within a given frame is shielded from unauthorised access and public display. Consequently, a PC network is considered to be fully completed if the primary objectives of these three standards have been satisfactorily met. To assist in achieving these objectives, Intrusion Detection Systems have been developed with the fundamental purpose of scanning incoming traffic on computer networks for malicious intrusions.
Priya, D Divya, Kiran, Ajmeera, Purushotham, P.  2022.  Lightweight Intrusion Detection System(L-IDS) for the Internet of Things. 2022 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC). :1—4.
Internet of Things devices collect and share data (IoT). Internet connections and emerging technologies like IoT offer privacy and security challenges, and this trend is anticipated to develop quickly. Internet of Things intrusions are everywhere. Businesses are investing more to detect these threats. Institutes choose accurate testing and verification procedures. In recent years, IoT utilisation has increasingly risen in healthcare. Where IoT applications gained popular among technologists. IoT devices' energy limits and scalability raise privacy and security problems. Experts struggle to make IoT devices more safe and private. This paper provides a machine-learning-based IDS for IoT network threats (ML-IDS). This study aims to implement ML-supervised IDS for IoT. We're going with a centralised, lightweight IDS. Here, we compare seven popular categorization techniques on three data sets. The decision tree algorithm shows the best intrusion detection results.
Nisha, T N, Pramod, Dhanya.  2022.  Sequential event-based detection of network attacks on CSE CIC IDS 2018 data set – Application of GSP and IPAM Algorithm. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS). :1—7.
Network attacks are always a nightmare for the network administrators as it eats away a huge wavelength and disturbs the normal working of many critical services in the network. Network behavior based profiling and detection is considered to be an accepted method; but the modeling data and method is always a big concern. The network event-based profiling is getting acceptance as they are sequential in nature and the sequence depicts the behavior of the system. This sequential network events can be analyzed using different techniques to create a profile for anomaly detection. In this paper we examine the possibility of two techniques for sequential event analysis using Modified GSP and IPAM algorithm. We evaluate the performance of these algorithms on the CSE-CIC-IDS 2018 data set to benchmark the performance. This experiment is different from other anomaly-based detection which evaluates the features of the dataset to detect the abnormalities. The performance of the algorithms on the dataset is then confirmed by the pattern evolving from the analysis and the indications it provides for early detection of network attacks.
Waluyo, Adam, Cahyono, M.T. Setiyo, Mahfud, Ahmad Zainudin.  2022.  Digital Forensic Analysis on Caller ID Spoofing Attack. 2022 7th International Workshop on Big Data and Information Security (IWBIS). :95—100.
Misuse of caller ID spoofing combined with social engineering has the potential as a means to commit other crimes, such as fraud, theft, leaking sensitive information, spreading hoaxes, etc. The appropriate forensic technique must be carried out to support the verification and collection of evidence related to these crimes. In this research, a digital forensic analysis was carried out on the BlueStacks emulator, Redmi 5A smartphone, and SIM card which is a device belonging to the victim and attacker to carry out caller ID spoofing attacks. The forensic analysis uses the NIST SP 800-101 R1 guide and forensic tools FTK imager, Oxygen Forensic Detective, and Paraben’s E3. This research aims to determine the artifacts resulting from caller ID spoofing attacks to assist in mapping and finding digital evidence. The result of this research is a list of digital evidence findings in the form of a history of outgoing calls, incoming calls, caller ID from the source of the call, caller ID from the destination of the call, the time the call started, the time the call ended, the duration of the call, IMSI, ICCID, ADN, and TMSI.
2023-07-10
Devi, Reshoo, Kumar, Amit, Kumar, Vivek, Saini, Ashish, Kumari, Amrita, Kumar, Vipin.  2022.  A Review Paper on IDS in Edge Computing or EoT. 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP). :30—35.

The main intention of edge computing is to improve network performance by storing and computing data at the edge of the network near the end user. However, its rapid development largely ignores security threats in large-scale computing platforms and their capable applications. Therefore, Security and privacy are crucial need for edge computing and edge computing based environment. Security vulnerabilities in edge computing systems lead to security threats affecting edge computing networks. Therefore, there is a basic need for an intrusion detection system (IDS) designed for edge computing to mitigate security attacks. Due to recent attacks, traditional algorithms may not be possibility for edge computing. This article outlines the latest IDS designed for edge computing and focuses on the corresponding methods, functions and mechanisms. This review also provides deep understanding of emerging security attacks in edge computing. This article proves that although the design and implementation of edge computing IDS have been studied previously, the development of efficient, reliable and powerful IDS for edge computing systems is still a crucial task. At the end of the review, the IDS developed will be introduced as a future prospect.

2023-06-23
Angiulli, Fabrizio, Furfaro, Angelo, Saccá, Domenico, Sacco, Ludovica.  2022.  Evaluating Deep Packet Inspection in Large-scale Data Processing. 2022 9th International Conference on Future Internet of Things and Cloud (FiCloud). :16–23.
The Internet has evolved to the point that gigabytes and even terabytes of data are generated and processed on a daily basis. Such a stream of data is characterised by high volume, velocity and variety and is referred to as Big Data. Traditional data processing tools can no longer be used to process big data, because they were not designed to handle such a massive amount of data. This problem concerns also cyber security, where tools like intrusion detection systems employ classification algorithms to analyse the network traffic. Achieving a high accuracy attack detection becomes harder when the amount of data increases and the algorithms must be efficient enough to keep up with the throughput of a huge data stream. Due to the challenges posed by a big data environment, some monitoring systems have already shifted from deep packet inspection to flow-level inspection. The goal of this paper is to evaluate the applicability of an existing intrusion detection technique that performs deep packet inspection in a big data setting. We have conducted several experiments with Apache Spark to assess the performance of the technique when classifying anomalous packets, showing that it benefits from the use of Spark.
2023-05-12
Verma, Kunaal, Girdhar, Mansi, Hafeez, Azeem, Awad, Selim S..  2022.  ECU Identification using Neural Network Classification and Hyperparameter Tuning. 2022 IEEE International Workshop on Information Forensics and Security (WIFS). :1–6.
Intrusion detection for Controller Area Network (CAN) protocol requires modern methods in order to compete with other electrical architectures. Fingerprint Intrusion Detection Systems (IDS) provide a promising new approach to solve this problem. By characterizing network traffic from known ECUs, hazardous messages can be discriminated. In this article, a modified version of Fingerprint IDS is employed utilizing both step response and spectral characterization of network traffic via neural network training. With the addition of feature set reduction and hyperparameter tuning, this method accomplishes a 99.4% detection rate of trusted ECU traffic.
ISSN: 2157-4774
2023-04-28
Jain, Ashima, Tripathi, Khushboo, Jatain, Aman, Chaudhary, Manju.  2022.  A Game Theory based Attacker Defender Model for IDS in Cloud Security. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :190–194.

Cloud security has become a serious challenge due to increasing number of attacks day-by-day. Intrusion Detection System (IDS) requires an efficient security model for improving security in the cloud. This paper proposes a game theory based model, named as Game Theory Cloud Security Deep Neural Network (GT-CSDNN) for security in cloud. The proposed model works with the Deep Neural Network (DNN) for classification of attack and normal data. The performance of the proposed model is evaluated with CICIDS-2018 dataset. The dataset is normalized and optimal points about normal and attack data are evaluated based on the Improved Whale Algorithm (IWA). The simulation results show that the proposed model exhibits improved performance as compared with existing techniques in terms of accuracy, precision, F-score, area under the curve, False Positive Rate (FPR) and detection rate.

2023-01-13
Yuan, Wenyong, Wei, Lixian, Li, Zhengge, Ki, Ruifeng, Yang, Xiaoyuan.  2022.  ID-based Data Integrity Auditing Scheme from RSA with Forward Security. 2022 7th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA). :192—197.

Cloud data integrity verification was an important means to ensure data security. We used public key infrastructure (PKI) to manage user keys in Traditional way, but there were problems of certificate verification and high cost of key management. In this paper, RSA signature was used to construct a new identity-based cloud audit protocol, which solved the previous problems caused by PKI and supported forward security, and reduced the loss caused by key exposure. Through security analysis, the design scheme could effectively resist forgery attack and support forward security.

2022-12-06
Verma, Sachin Kumar, Verma, Abhishek, Pandey, Avinash Chandra.  2022.  Addressing DAO Insider Attacks in IPv6-Based Low-Power and Lossy Networks. 2022 IEEE Region 10 Symposium (TENSYMP). :1-6.

Low-Power and Lossy Networks (LLNs) run on resource-constrained devices and play a key role in many Industrial Internet of Things and Cyber-Physical Systems based applications. But, achieving an energy-efficient routing in LLNs is a major challenge nowadays. This challenge is addressed by Routing Protocol for Low-power Lossy Networks (RPL), which is specified in RFC 6550 as a “Proposed Standard” at present. In RPL, a client node uses Destination Advertisement Object (DAO) control messages to pass on the destination information towards the root node. An attacker may exploit the DAO sending mechanism of RPL to perform a DAO Insider attack in LLNs. In this paper, it is shown that an aggressive attacker can drastically degrade the network performance. To address DAO Insider attack, a lightweight defense solution is proposed. The proposed solution uses an early blacklisting strategy to significantly mitigate the attack and restore RPL performance. The proposed solution is implemented and tested on Cooja Simulator.

Dhingra, Akshaya, Sindhu, Vikas.  2022.  A Study of RPL Attacks and Defense Mechanisms in the Internet of Things Network. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS). :1-6.

The Internet of Things (IoT) is a technology that has evolved to make day-to-day life faster and easier. But with the increase in the number of users, the IoT network is prone to various security and privacy issues. And most of these issues/attacks occur during the routing of the data in the IoT network. Therefore, for secure routing among resource-constrained nodes of IoT, the RPL protocol has been standardized by IETF. But the RPL protocol is also vulnerable to attacks based on resources, topology formation and traffic flow between nodes. The attacks like DoS, Blackhole, eavesdropping, flood attacks and so on cannot be efficiently defended using RPL protocol for routing data in IoT networks. So, defense mechanisms are used to protect networks from routing attacks. And are classified into Secure Routing Protocols (SRPs) and Intrusion Detection systems (IDs). This paper gives an overview of the RPL attacks and the defense mechanisms used to detect or mitigate the RPL routing attacks in IoT networks.

Kiran, Usha.  2022.  IDS To Detect Worst Parent Selection Attack In RPL-Based IoT Network. 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS). :769-773.

The most widely used protocol for routing across the 6LoWPAN stack is the Routing Protocol for Low Power and Lossy (RPL) Network. However, the RPL lacks adequate security solutions, resulting in numerous internal and external security vulnerabilities. There is still much research work left to uncover RPL's shortcomings. As a result, we first implement the worst parent selection (WPS) attack in this paper. Second, we offer an intrusion detection system (IDS) to identify the WPS attack. The WPS attack modifies the victim node's objective function, causing it to choose the worst node as its preferred parent. Consequently, the network does not achieve optimal convergence, and nodes form the loop; a lower rank node selects a higher rank node as a parent, effectively isolating many nodes from the network. In addition, we propose DWA-IDS as an IDS for detecting WPS attacks. We use the Contiki-cooja simulator for simulation purposes. According to the simulation results, the WPS attack reduces system performance by increasing packet transmission time. The DWA-IDS simulation results show that our IDS detects all malicious nodes that launch the WPS attack. The true positive rate of the proposed DWA-IDS is more than 95%, and the detection rate is 100%. We also deliberate the theoretical proof for the false-positive case as our DWA-IDS do not have any false-positive case. The overhead of DWA-IDS is modest enough to be set up with low-power and memory-constrained devices.

2022-06-09
Fadhlillah, Aghnia, Karna, Nyoman, Irawan, Arif.  2021.  IDS Performance Analysis using Anomaly-based Detection Method for DOS Attack. 2020 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS). :18–22.
Intrusion Detection System (IDS) is a system that could detect suspicious activity in a network. Two approaches are known for IDS, namely signature-based and anomaly-based. The anomaly-based detection method was chosen to detect suspicious and abnormal activity for the system that cannot be performed by the signature-based method. In this study, attack testing was carried out using three DoS tools, namely the LOIC, Torshammer, and Xerxes tools, with a test scenario using IDS and without IDS. From the test results that have been carried out, IDS has successfully detected the attacks that were sent, for the delivery of the most consecutive attack packages, namely Torshammer, Xerxes, and LOIC. In the detection of Torshammer attack tools on the target FTP Server, 9421 packages were obtained, for Xerxes tools as many as 10618 packages and LOIC tools as many as 6115 packages. Meanwhile, attacks on the target Web Server for Torshammer tools were 299 packages, for Xerxes tools as many as 530 packages, and for LOIC tools as many as 103 packages. The accuracy of the IDS performance results is 88.66%, the precision is 88.58% and the false positive rate is 63.17%.
Jisna, P, Jarin, T, Praveen, P N.  2021.  Advanced Intrusion Detection Using Deep Learning-LSTM Network On Cloud Environment. 2021 Fourth International Conference on Microelectronics, Signals Systems (ICMSS). :1–6.
Cloud Computing is a favored choice of any IT organization in the current context since that provides flexibility and pay-per-use service to the users. Moreover, due to its open and inclusive architecture which is accessible to attackers. Security and privacy are a big roadblock to its success. For any IT organization, intrusion detection systems are essential to the detection and endurance of effective detection system against attacker aggressive attacks. To recognize minor occurrences and become significant breaches, a fully managed intrusion detection system is required. The most prevalent approach for intrusion detection on the cloud is the Intrusion Detection System (IDS). This research introduces a cloud-based deep learning-LSTM IDS model and evaluates it to a hybrid Stacked Contractive Auto Encoder (SCAE) + Support Vector Machine (SVM) IDS model. Deep learning algorithms like basic machine learning can be built to conduct attack detection and classification simultaneously. Also examine the detection methodologies used by certain existing intrusion detection systems. On two well-known Intrusion Detection datasets (KDD Cup 99 and NSL-KDD), our strategy outperforms current methods in terms of accurate detection.
Alsyaibani, Omar Muhammad Altoumi, Utami, Ema, Hartanto, Anggit Dwi.  2021.  An Intrusion Detection System Model Based on Bidirectional LSTM. 2021 3rd International Conference on Cybernetics and Intelligent System (ICORIS). :1–6.
Intrusion Detection System (IDS) is used to identify malicious traffic on the network. Apart from rule-based IDS, machine learning and deep learning based on IDS are also being developed to improve the accuracy of IDS detection. In this study, the public dataset CIC IDS 2017 was used in developing deep learning-based IDS because this dataset contains the new types of attacks. In addition, this dataset also meets the criteria as an intrusion detection dataset. The dataset was split into train data, validation data and test data. We proposed Bidirectional Long-Short Term Memory (LSTM) for building neural network. We created 24 scenarios with various changes in training parameters which were trained for 100 epochs. The training parameters used as research variables are optimizer, activation function, and learning rate. As addition, Dropout layer and L2-regularizer were implemented on every scenario. The result shows that the model used Adam optimizer, Tanh activation function and a learning rate of 0.0001 produced the highest accuracy compared to other scenarios. The accuracy and F1 score reached 97.7264% and 97.7516%. The best model was trained again until 1000 iterations and the performance increased to 98.3448% in accuracy and 98.3793% in F1 score. The result exceeded several previous works on the same dataset.
Ali, Jokha.  2021.  Intrusion Detection Systems Trends to Counteract Growing Cyber-Attacks on Cyber-Physical Systems. 2021 22nd International Arab Conference on Information Technology (ACIT). :1–6.
Cyber-Physical Systems (CPS) suffer from extendable vulnerabilities due to the convergence of the physical world with the cyber world, which makes it victim to a number of sophisticated cyber-attacks. The motives behind such attacks range from criminal enterprises to military, economic, espionage, political, and terrorism-related activities. Many governments are more concerned than ever with securing their critical infrastructure. One of the effective means of detecting threats and securing their infrastructure is the use of Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS). A number of studies have been conducted and proposed to assess the efficacy and effectiveness of IDS through the use of self-learning techniques, especially in the Industrial Control Systems (ICS) era. This paper investigates and analyzes the utilization of IDS systems and their proposed solutions used to enhance the effectiveness of such systems for CPS. The targeted data extraction was from 2011 to 2021 from five selected sources: IEEE, ACM, Springer, Wiley, and ScienceDirect. After applying the inclusion and exclusion criteria, 20 primary studies were selected from a total of 51 studies in the field of threat detection in CPS, ICS, SCADA systems, and the IoT. The outcome revealed the trends in recent research in this area and identified essential techniques to improve detection performance, accuracy, reliability, and robustness. In addition, this study also identified the most vulnerable target layer for cyber-attacks in CPS. Various challenges, opportunities, and solutions were identified. The findings can help scholars in the field learn about how machine learning (ML) methods are used in intrusion detection systems. As a future direction, more research should explore the benefits of ML to safeguard cyber-physical systems.
Iashvili, Giorgi, Iavich, Maksim, Bocu, Razvan, Odarchenko, Roman, Gnatyuk, Sergiy.  2021.  Intrusion Detection System for 5G with a Focus on DOS/DDOS Attacks. 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 2:861–864.
The industry of telecommunications is being transformed towards 5G technology, because it has to deal with the emerging and existing use cases. Because, 5G wireless networks need rather large data rates and much higher coverage of the dense base station deployment with the bigger capacity, much better Quality of Service - QoS, and the need very low latency [1–3]. The provision of the needed services which are envisioned by 5G technologies need the new service models of deployment, networking architectures, processing technologies and storage to be defined. These technologies will cause the new problems for the cybersecurity of 5G systems and the security of their functionality. The developers and researchers working in this field make their best to secure 5G systems. The researchers showed that 5G systems have the security challenges. The researchers found the vulnerabilities in 5G systems which allow attackers to integrate malicious code into the system and make the different types of the illegitimate actions. MNmap, Battery drain attacks and MiTM can be successfully implemented on 5G. The paper makes the analysis of the existing cyber security problems in 5G technology. Based on the analysis, we suggest the novel Intrusion Detection System - IDS by means of the machine-learning algorithms. In the related papers the scientists offer to use NSL-KDD in order to train IDS. In our paper we offer to train IDS using the big datasets of DOS/DDOS attacks, besides of training using NSL-KDD. The research also offers the methodology of integration of the offered intrusion detection systems into an standard architecture of 5G. The paper also offers the pseudo code of the designed system.
Jin, Shiyi, Chung, Jin-Gyun, Xu, Yinan.  2021.  Signature-Based Intrusion Detection System (IDS) for In-Vehicle CAN Bus Network. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.

In-vehicle CAN (Controller Area Network) bus network does not have any network security protection measures, which is facing a serious network security threat. However, most of the intrusion detection solutions requiring extensive computational resources cannot be implemented in in- vehicle network system because of the resource constrained ECUs. To add additional hardware or to utilize cloud computing, we need to solve the cost problem and the reliable communication requirement between vehicles and cloud platform, which is difficult to be applied in a short time. Therefore, we need to propose a short-term solution for automobile manufacturers. In this paper, we propose a signature-based light-weight intrusion detection system, which can be applied directly and promptly to vehicle's ECUs (Electronic Control Units). We detect the anomalies caused by several attack modes on CAN bus from real-world scenarios, which provide the basis for selecting signatures. Experimental results show that our method can effectively detect CAN traffic related anomalies. For the content related anomalies, the detection ratio can be improved by exploiting the relationship between the signals.

2022-04-26
Shi, Jibo, Lin, Yun, Zhang, Zherui, Yu, Shui.  2021.  A Hybrid Intrusion Detection System Based on Machine Learning under Differential Privacy Protection. 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall). :1–6.

With the development of network, network security has become a topic of increasing concern. Recent years, machine learning technology has become an effective means of network intrusion detection. However, machine learning technology requires a large amount of data for training, and training data often contains privacy information, which brings a great risk of privacy leakage. At present, there are few researches on data privacy protection in the field of intrusion detection. Regarding the issue of privacy and security, we combine differential privacy and machine learning algorithms, including One-class Support Vector Machine (OCSVM) and Local Outlier Factor(LOF), to propose an hybrid intrusion detection system (IDS) with privacy protection. We add Laplacian noise to the original network intrusion detection data set to get differential privacy data sets with different privacy budgets, and proposed a hybrid IDS model based on machine learning to verify their utility. Experiments show that while protecting data privacy, the hybrid IDS can achieve detection accuracy comparable to traditional machine learning algorithms.

2022-04-25
Dijk, Allard.  2021.  Detection of Advanced Persistent Threats using Artificial Intelligence for Deep Packet Inspection. 2021 IEEE International Conference on Big Data (Big Data). :2092–2097.

Advanced persistent threats (APT’s) are stealthy threat actors with the skills to gain covert control of the computer network for an extended period of time. They are the highest cyber attack risk factor for large companies and states. A successful attack via an APT can cost millions of dollars, can disrupt civil life and has the capabilities to do physical damage. APT groups are typically state-sponsored and are considered the most effective and skilled cyber attackers. Attacks of APT’s are executed in several stages as pointed out in the Lockheed Martin cyber kill chain (CKC). Each of these APT stages can potentially be identified as patterns in network traffic. Using the "APT-2020" dataset, that compiles the characteristics and stages of an APT, we carried out experiments on the detection of anomalous traffic for all APT stages. We compare several artificial intelligence models, like a stacked auto encoder, a recurrent neural network and a one class state vector machine and show significant improvements on detection in the data exfiltration stage. This dataset is the first to have a data exfiltration stage included to experiment on. According to APT-2020’s authors current models have the biggest challenge specific to this stage. We introduce a method to successfully detect data exfiltration by analyzing the payload of the network traffic flow. This flow based deep packet inspection approach improves detection compared to other state of the art methods.

2022-04-13
Bozorov, Suhrobjon.  2021.  DDoS Attack Detection via IDS: Open Challenges and Problems. 2021 International Conference on Information Science and Communications Technologies (ICISCT). :1—4.
This paper discusses DDoS attacks, their current threat level and IDS systems, which are one of the main tools to protect against them. It focuses on the problems encountered by IDS systems in detecting DDoS attacks and the difficulties and challenges of integrating them with artificial intelligence systems today.
2022-04-01
Sutton, Robert, Ludwiniak, Robert, Pitropakis, Nikolaos, Chrysoulas, Christos, Dagiuklas, Tasos.  2021.  Towards An SDN Assisted IDS. 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–5.
Modern Intrusion Detection Systems are able to identify and check all traffic crossing the network segments that they are only set to monitor. Traditional network infrastructures use static detection mechanisms that check and monitor specific types of malicious traffic. To mitigate this potential waste of resources and improve scalability across an entire network, we propose a methodology which deploys distributed IDS in a Software Defined Network allowing them to be used for specific types of traffic as and when it appears on a network. The core of our work is the creation of an SDN application that takes input from a Snort IDS instances, thus working as a classifier for incoming network traffic with a static ruleset for those classifications. Our application has been tested on a virtualised platform where it performed as planned holding its position for limited use on static and controlled test environments.