Visible to the public Biblio

Found 139 results

Filters: Keyword is IDS  [Clear All Filters]
2018-06-20
Chourasia, R., Boghey, R. K..  2017.  Novel IDS security against attacker routing misbehavior of packet dropping in MANET. 2017 7th International Conference on Cloud Computing, Data Science Engineering - Confluence. :456–460.

The MANET that is Mobile Ad hoc Network are forming a group of many nodes. They can interact with each other in limited area. All the Malicious nodes present in the MANET always disturb the usual performance of routing and that cause the degradation of dynamic performance of the network. Nodes which are malicious continuously try to stump the neighbor nodes during the process of routing as all neighbor nodes in the network merely forward the reply and response of neighboring. The intermediate nodes work is very responsible in routing procedure with continuous movement. During the work we have recommended one security scheme against the attack of packet dropping by malicious node in the network. The scheme which is recommended here will work to find attacker by using the concept of detection of link to forward the data or information between sender and receiver. The packet dropping on link, through node is detected and prevented by IDS security system. The scheme not only works to identify the nodes performing malicious activity however prevent them also. The identification of attacker is noticed by dropping of data packets in excsssessive quantity. The prevention of it can be done via choosing the alternate route somewhere the attacker performing malicious activity not available among the senders to receivers. The neighbor nodes or intermediary identify the malicious activity performer by the way of reply of malicious nodes which is confirmed. The recommended IDS system secures the network and also increases the performance after blocking malicious nodes that perform malicious activity in the network. The network performance measures in the presence of attack and secure IDS with the help of performance metrics like PDR, throughput etc. Planned secure routing improves data receiving and minimizes dropping data in network.

Petersen, E., To, M. A., Maag, S..  2017.  A novel online CEP learning engine for MANET IDS. 2017 IEEE 9th Latin-American Conference on Communications (LATINCOM). :1–6.

In recent years the use of wireless ad hoc networks has seen an increase of applications. A big part of the research has focused on Mobile Ad Hoc Networks (MAnETs), due to its implementations in vehicular networks, battlefield communications, among others. These peer-to-peer networks usually test novel communications protocols, but leave out the network security part. A wide range of attacks can happen as in wired networks, some of them being more damaging in MANETs. Because of the characteristics of these networks, conventional methods for detection of attack traffic are ineffective. Intrusion Detection Systems (IDSs) are constructed on various detection techniques, but one of the most important is anomaly detection. IDSs based only in past attacks signatures are less effective, even more if these IDSs are centralized. Our work focuses on adding a novel Machine Learning technique to the detection engine, which recognizes attack traffic in an online way (not to store and analyze after), re-writing IDS rules on the fly. Experiments were done using the Dockemu emulation tool with Linux Containers, IPv6 and OLSR as routing protocol, leading to promising results.

2018-04-02
Alom, M. Z., Taha, T. M..  2017.  Network Intrusion Detection for Cyber Security on Neuromorphic Computing System. 2017 International Joint Conference on Neural Networks (IJCNN). :3830–3837.

In the paper, we demonstrate a neuromorphic cognitive computing approach for Network Intrusion Detection System (IDS) for cyber security using Deep Learning (DL). The algorithmic power of DL has been merged with fast and extremely power efficient neuromorphic processors for cyber security. In this implementation, the data has been numerical encoded to train with un-supervised deep learning techniques called Auto Encoder (AE) in the training phase. The generated weights of AE are used as initial weights for the supervised training phase using neural networks. The final weights are converted to discrete values using Discrete Vector Factorization (DVF) for generating crossbar weight, synaptic weights, and thresholds for neurons. Finally, the generated crossbar weights, synaptic weights, threshold, and leak values are mapped to crossbars and neurons. In the testing phase, the encoded test samples are converted to spiking form by using hybrid encoding technique. The model has been deployed and tested on the IBM Neurosynaptic Core Simulator (NSCS) and on actual IBM TrueNorth neurosynaptic chip. The experimental results show around 90.12% accuracy for network intrusion detection for cyber security on the physical neuromorphic chip. Furthermore, we have investigated the proposed system not only for detection of malicious packets but also for classifying specific types of attacks and achieved 81.31% recognition accuracy. The neuromorphic implementation provides incredible detection and classification accuracy for network intrusion detection with extremely low power.

2018-03-26
Pallaprolu, S. C., Sankineni, R., Thevar, M., Karabatis, G., Wang, J..  2017.  Zero-Day Attack Identification in Streaming Data Using Semantics and Spark. 2017 IEEE International Congress on Big Data (BigData Congress). :121–128.

Intrusion Detection Systems (IDS) have been in existence for many years now, but they fall short in efficiently detecting zero-day attacks. This paper presents an organic combination of Semantic Link Networks (SLN) and dynamic semantic graph generation for the on the fly discovery of zero-day attacks using the Spark Streaming platform for parallel detection. In addition, a minimum redundancy maximum relevance (MRMR) feature selection algorithm is deployed to determine the most discriminating features of the dataset. Compared to previous studies on zero-day attack identification, the described method yields better results due to the semantic learning and reasoning on top of the training data and due to the use of collaborative classification methods. We also verified the scalability of our method in a distributed environment.

2018-02-28
Shreenivas, Dharmini, Raza, Shahid, Voigt, Thiemo.  2017.  Intrusion Detection in the RPL-connected 6LoWPAN Networks. Proceedings of the 3rd ACM International Workshop on IoT Privacy, Trust, and Security. :31–38.
The interconnectivity of 6LoWPAN networks with the Internet raises serious security concerns, as constrained 6LoWPAN devices are accessible anywhere from the untrusted global Internet. Also, 6LoWPAN devices are mostly deployed in unattended environments, hence easy to capture and clone. Despite that state of the art crypto solutions provide information security, IPv6 enabled smart objects are vulnerable to attacks from outside and inside 6LoWPAN networks that are aimed to disrupt networks. This paper attempts to identify intrusions aimed to disrupt the Routing Protocol for Low-Power and Lossy Networks (RPL).In order to improve the security within 6LoWPAN networks, we extend SVELTE, an intrusion detection system for the Internet of Things, with an intrusion detection module that uses the ETX (Expected Transmissions) metric. In RPL, ETX is a link reliability metric and monitoring the ETX value can prevent an intruder from actively engaging 6LoWPAN nodes in malicious activities. We also propose geographic hints to identify malicious nodes that conduct attacks against ETX-based networks. We implement these extensions in the Contiki OS and evaluate them using the Cooja simulator.
2018-02-21
Elsaeidy, A., Elgendi, I., Munasinghe, K. S., Sharma, D., Jamalipour, A..  2017.  A smart city cyber security platform for narrowband networks. 2017 27th International Telecommunication Networks and Applications Conference (ITNAC). :1–6.

Smart city is gaining a significant attention all around the world. Narrowband technologies would have strong impact on achieving the smart city promises to its citizens with its powerful and efficient spectrum. The expected diversity of applications, different data structures and high volume of connecting devices for smart cities increase the persistent need to apply narrowband technologies. However, narrowband technologies have recognized limitations regarding security which make them an attractive target to cyber-attacks. In this paper, a novel platform architecture to secure smart city against cyber attackers is presented. The framework is providing a threat deep learning-based model to detect attackers based on users data behavior. The proposed architecture could be considered as an attempt toward developing a universal model to identify and block Denial of Service (DoS) attackers in a real time for smart city applications.

2018-02-02
Sprabery, R., Estrada, Z. J., Kalbarczyk, Z., Iyer, R., Bobba, R. B., Campbell, R..  2017.  Trustworthy Services Built on Event-Based Probing for Layered Defense. 2017 IEEE International Conference on Cloud Engineering (IC2E). :215–225.

Numerous event-based probing methods exist for cloud computing environments allowing a hypervisor to gain insight into guest activities. Such event-based probing has been shown to be useful for detecting attacks, system hangs through watchdogs, and for inserting exploit detectors before a system can be patched, among others. Here, we illustrate how to use such probing for trustworthy logging and highlight some of the challenges that existing event-based probing mechanisms do not address. Challenges include ensuring a probe inserted at given address is trustworthy despite the lack of attestation available for probes that have been inserted dynamically. We show how probes can be inserted to ensure proper logging of every invocation of a probed instruction. When combined with attested boot of the hypervisor and guest machines, we can ensure the output stream of monitored events is trustworthy. Using these techniques we build a trustworthy log of certain guest-system-call events. The log powers a cloud-tuned Intrusion Detection System (IDS). New event types are identified that must be added to existing probing systems to ensure attempts to circumvent probes within the guest appear in the log. We highlight the overhead penalties paid by guests to increase guarantees of log completeness when faced with attacks on the guest kernel. Promising results (less that 10% for guests) are shown when a guest relaxes the trade-off between log completeness and overhead. Our demonstrative IDS detects common attack scenarios with simple policies built using our guest behavior recording system.

2018-01-16
Goncalves, J. A., Faria, V. S., Vieira, G. B., Silva, C. A. M., Mascarenhas, D. M..  2017.  WIDIP: Wireless distributed IPS for DDoS attacks. 2017 1st Cyber Security in Networking Conference (CSNet). :1–3.

This paper presents a wireless intrusion prevention tool for distributed denial of service attacks DDoS. This tool, called Wireless Distributed IPS WIDIP, uses a different collection of data to identify attackers from inside a private network. WIDIP blocks attackers and also propagates its information to other wireless routers that run the IPS. This communication behavior provides higher fault tolerance and stops attacks from different network endpoints. WIDIP also block network attackers at its first hop and thus reduce the malicious traffic near its source. Comparative tests of WIDIP with other two tools demonstrated that our tool reduce the delay of target response after attacks in application servers by 11%. In addition to reducing response time, WIDIP comparatively reduces the number of control messages on the network when compared to IREMAC.

2017-12-28
Mehetrey, P., Shahriari, B., Moh, M..  2016.  Collaborative Ensemble-Learning Based Intrusion Detection Systems for Clouds. 2016 International Conference on Collaboration Technologies and Systems (CTS). :404–411.

Cloud computation has become prominent with seemingly unlimited amount of storage and computation available to users. Yet, security is a major issue that hampers the growth of cloud. In this research we investigate a collaborative Intrusion Detection System (IDS) based on the ensemble learning method. It uses weak classifiers, and allows the use of untapped resources of cloud to detect various types of attacks on the cloud system. In the proposed system, tasks are distributed among available virtual machines (VM), individual results are then merged for the final adaptation of the learning model. Performance evaluation is carried out using decision trees and using fuzzy classifiers, on KDD99, one of the largest datasets for IDS. Segmentation of the dataset is done in order to mimic the behavior of real-time data traffic occurred in a real cloud environment. The experimental results show that the proposed approach reduces the execution time with improved accuracy, and is fault-tolerant when handling VM failures. The system is a proof-of-concept model for a scalable, cloud-based distributed system that is able to explore untapped resources, and may be used as a base model for a real-time hierarchical IDS.

Tang, H..  2016.  A Network IDS Model Based on Improved Artificial Immune Algorithm. 2016 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS). :46–50.

The network intrusion detection problem domain is described with mathematical knowledge in this paper, and a novel IDS detection model based on immune mechanism is designed. We study the key modules of IDS system, detector tolerance module and the algorithms of IDS detection intensively. Then, the continuous bit matching algorithm for computing affinity is improved by further analysis. At the same time, we adopt controllable variation and random variation, as well as dynamic demotion to improve the dynamic clonal selection algorithm. Finally the experimental simulations verify that the novel artificial immune algorithm has better detection rate and lower noise factor.

2017-11-20
Koch, R., Kühn, T., Odenwald, M., Rodosek, G. Dreo.  2016.  Dr. WATTson: Lightweight current-based Intrusion Detection (CBID). 2016 14th Annual Conference on Privacy, Security and Trust (PST). :170–177.

Intrusion detection has been an active field of research for more than 35 years. Numerous systems had been built based on the two fundamental detection principles, knowledge-based and behavior-based detection. Anyway, having a look at day-to-day news about data breaches and successful attacks, detection effectiveness is still limited. Even more, heavy-weight intrusion detection systems cannot be installed in every endangered environment. For example, Industrial Control Systems are typically utilized for decades, charging off huge investments of companies. Thus, some of these systems have been in operation for years, but were designed afore without security in mind. Even worse, as systems often have connections to other networks and even the Internet nowadays, an adequate protection is mandatory, but integrating intrusion detection can be extremely difficult - or even impossible to date. We propose a new lightweight current-based IDS which is using a difficult to manipulate measurement base and verifiable ground truth. Focus of our system is providing intrusion detection for ICS and SCADA on a low-priced base, easy to integrate. Dr. WATTson, a prototype implemented based on our concept provides high detection and low false alarm rates.

2017-10-19
Udd, Robert, Asplund, Mikael, Nadjm-Tehrani, Simin, Kazemtabrizi, Mehrdad, Ekstedt, Mathias.  2016.  Exploiting Bro for Intrusion Detection in a SCADA System. Proceedings of the 2Nd ACM International Workshop on Cyber-Physical System Security. :44–51.
Supervisory control and data acquisition (SCADA) systems that run our critical infrastructure are increasingly run with Internet-based protocols and devices for remote monitoring. The embedded nature of the components involved, and the legacy aspects makes adding new security mechanisms in an efficient manner far from trivial. In this paper we study an anomaly detection based approach that enables detecting zero-day malicious threats and benign malconfigurations and mishaps. The approach builds on an existing platform (Bro) that lends itself to modular addition of new protocol parsers and event handling mechanisms. As an example we have shown an application of the technique to the IEC-60870-5-104 protocol and tested the anomaly detector with mixed results. The detection accuracy and false positive rate, as well as real-time response was adequate for 3 of our 4 created attacks. We also discovered some additional work that needs to be done to an existing protocol parser to extend its reach.
2017-09-19
Hamid, Yasir, Sugumaran, M., Journaux, Ludovic.  2016.  Machine Learning Techniques for Intrusion Detection: A Comparative Analysis. Proceedings of the International Conference on Informatics and Analytics. :53:1–53:6.

With the growth of internet world has transformed into a global market with all monetary and business exercises being carried online. Being the most imperative resource of the developing scene, it is the vulnerable object and hence needs to be secured from the users with dangerous personality set. Since the Internet does not have focal surveillance component, assailants once in a while, utilizing varied and advancing hacking topologies discover a path to bypass framework's security and one such collection of assaults is Intrusion. An intrusion is a movement of breaking into the framework by compromising the security arrangements of the framework set up. The technique of looking at the system information for the conceivable intrusions is known intrusion detection. For the last two decades, automatic intrusion detection system has been an important exploration point. Till now researchers have developed Intrusion Detection Systems (IDS) with the capability of detecting attacks in several available environments; latest on the scene are Machine Learning approaches. Machine learning techniques are the set of evolving algorithms that learn with experience, have improved performance in the situations they have already encountered and also enjoy a broad range of applications in speech recognition, pattern detection, outlier analysis etc. There are a number of machine learning techniques developed for different applications and there is no universal technique that can work equally well on all datasets. In this work, we evaluate all the machine learning algorithms provided by Weka against the standard data set for intrusion detection i.e. KddCupp99. Different measurements contemplated are False Positive Rate, precision, ROC, True Positive Rate.

2017-05-22
Saab, Farah, Elhajj, Imad, Kayssi, Ayman, Chehab, Ali.  2016.  A Crowdsourcing Game-theoretic Intrusion Detection and Rating System. Proceedings of the 31st Annual ACM Symposium on Applied Computing. :622–625.

One of the main concerns for smartphone users is the quality of apps they download. Before installing any app from the market, users first check its rating and reviews. However, these ratings are not computed by experts and most times are not associated with malicious behavior. In this work, we present an IDS/rating system based on a game theoretic model with crowdsourcing. Our results show that, with minor control over the error in categorizing users and the fraction of experts in the crowd, our system provides proper ratings while flagging all malicious apps.

2017-05-19
Chan, Harris, Hammad, Eman, Kundur, Deepa.  2016.  Investigating the Impact of Intrusion Detection System Performance on Communication Latency and Power System Stability. Proceedings of the Workshop on Communications, Computation and Control for Resilient Smart Energy Systems. :4:1–4:6.

While power grid systems benefit from utilizing communication network through networked control and protection, the addition of communication exposes the power system to new security vulnerabilities and potential attacks. To mitigate these attacks, such as denial of service, intrusion detection systems (IDS) are often employed. In this paper we investigate the relationship of IDS accuracy performance to the stability of power systems via its impact on communication latency. Several IDS machine learning algorithms are implemented on the NSL-KDD dataset to obtain accuracy performance, and a mathematical model for computing the latency when incorporating IDS detection information during network routing is introduced. Simulation results on the New England 39-bus power system suggest that during a cyber-physical attack, a practical IDS can achieve similar stability as an ideal IDS with perfect detection. In addition, false positive rate has been found to have a larger impact than false negative rate under the simulation conditions studied. These observations can contribute to the design requirements of future embedded IDS solutions for power systems.

2017-05-16
Calix, Ricardo A., Cabrera, Armando, Iqbal, Irshad.  2016.  Analysis of Parallel Architectures for Network Intrusion Detection. Proceedings of the 5th Annual Conference on Research in Information Technology. :7–12.

Intrusion detection systems need to be both accurate and fast. Speed is important especially when operating at the network level. Additionally, many intrusion detection systems rely on signature based detection approaches. However, machine learning can also be helpful for intrusion detection. One key challenge when using machine learning, aside from the detection accuracy, is using machine learning algorithms that are fast. In this paper, several processing architectures are considered for use in machine learning based intrusion detection systems. These architectures include standard CPUs, GPUs, and cognitive processors. Results of their processing speeds are compared and discussed.

Laszka, Aron, Abbas, Waseem, Sastry, S. Shankar, Vorobeychik, Yevgeniy, Koutsoukos, Xenofon.  2016.  Optimal Thresholds for Intrusion Detection Systems. Proceedings of the Symposium and Bootcamp on the Science of Security. :72–81.

In recent years, we have seen a number of successful attacks against high-profile targets, some of which have even caused severe physical damage. These examples have shown us that resourceful and determined attackers can penetrate virtually any system, even those that are secured by the "air-gap." Consequently, in order to minimize the impact of stealthy attacks, defenders have to focus not only on strengthening the first lines of defense but also on deploying effective intrusion-detection systems. Intrusion-detection systems can play a key role in protecting sensitive computer systems since they give defenders a chance to detect and mitigate attacks before they could cause substantial losses. However, an over-sensitive intrusion-detection system, which produces a large number of false alarms, imposes prohibitively high operational costs on a defender since alarms need to be manually investigated. Thus, defenders have to strike the right balance between maximizing security and minimizing costs. Optimizing the sensitivity of intrusion detection systems is especially challenging in the case when multiple inter-dependent computer systems have to be defended against a strategic attacker, who can target computer systems in order to maximize losses and minimize the probability of detection. We model this scenario as an attacker-defender security game and study the problem of finding optimal intrusion detection thresholds.

Yuan, Yali, Kaklamanos, Georgios, Hogrefe, Dieter.  2016.  A Novel Semi-Supervised Adaboost Technique for Network Anomaly Detection. Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems. :111–114.

With the developing of Internet, network intrusion has become more and more common. Quickly identifying and preventing network attacks is getting increasingly more important and difficult. Machine learning techniques have already proven to be robust methods in detecting malicious activities and network threats. Ensemble-based and semi-supervised learning methods are some of the areas that receive most attention in machine learning today. However relatively little attention has been given in combining these methods. To overcome such limitations, this paper proposes a novel network anomaly detection method by using a combination of a tri-training approach with Adaboost algorithms. The bootstrap samples of tri-training are replaced by three different Adaboost algorithms to create the diversity. We run 30 iteration for every simulation to obtain the average results. Simulations indicate that our proposed semi-supervised Adaboost algorithm is reproducible and consistent over a different number of runs. It outperforms other state-of-the-art learning algorithms, even with a small part of labeled data in the training phase. Specifically, it has a very short execution time and a good balance between the detection rate as well as the false-alarm rate.

Kleinmann, Amit, Wool, Avishai.  2016.  Automatic Construction of Statechart-Based Anomaly Detection Models for Multi-Threaded SCADA via Spectral Analysis. Proceedings of the 2Nd ACM Workshop on Cyber-Physical Systems Security and Privacy. :1–12.

Traffic of Industrial Control System (ICS) between the Human Machine Interface (HMI) and the Programmable Logic Controller (PLC) is highly periodic. However, it is sometimes multiplexed, due to multi-threaded scheduling. In previous work we introduced a Statechart model which includes multiple Deterministic Finite Automata (DFA), one per cyclic pattern. We demonstrated that Statechart-based anomaly detection is highly effective on multiplexed cyclic traffic when the individual cyclic patterns are known. The challenge is to construct the Statechart, by unsupervised learning, from a captured trace of the multiplexed traffic, especially when the same symbols (ICS messages) can appear in multiple cycles, or multiple times in a cycle. Previously we suggested a combinatorial approach for the Statechart construction, based on Euler cycles in the Discrete Time Markov Chain (DTMC) graph of the trace. This combinatorial approach worked well in simple scenarios, but produced a false-alarm rate that was excessive on more complex multiplexed traffic. In this paper we suggest a new Statechart construction method, based on spectral analysis. We use the Fourier transform to identify the dominant periods in the trace. Our algorithm then associates a set of symbols with each dominant period, identifies the order of the symbols within each period, and creates the cyclic DFAs and the Statechart. We evaluated our solution on long traces from two production ICS: one using the Siemens S7-0x72 protocol and the other using Modbus. We also stress-tested our algorithms on a collection of synthetically-generated traces that simulate multiplexed ICS traces with varying levels of symbol uniqueness and time overlap. The resulting Statecharts model the traces with an overall median false-alarm rate as low as 0.16% on the synthetic datasets, and with zero false-alarms on production S7-0x72 traffic. Moreover, the spectral analysis Statecharts consistently out-performed the previous combinatorial Statecharts, exhibiting significantly lower false alarm rates and more compact model sizes.

AlEroud, Ahmed, Karabatis, George.  2016.  Beyond Data: Contextual Information Fusion for Cyber Security Analytics. Proceedings of the 31st Annual ACM Symposium on Applied Computing. :73–79.

A major challenge of the existing attack detection approaches is the identification of relevant information to a particular situation, and the use of such information to perform multi-evidence intrusion detection. Addressing such a limitation requires integrating several aspects of context to better predict, avoid and respond to impending attacks. The quality and adequacy of contextual information is important to decrease uncertainty and correctly identify potential cyber-attacks. In this paper, a systematic methodology has been used to identify contextual dimensions that improve the effectiveness of detecting cyber-attacks. This methodology combines graph, probability, and information theories to create several context-based attack prediction models that analyze data at a high- and low-level. An extensive validation of our approach has been performed using a prototype system and several benchmark intrusion detection datasets yielding very promising results.

Yin, Shang-Nan, Kang, Ho-Seok, Chen, Zhi-Guo, Kim, Sung-Ryul.  2016.  Intrusion Detection System Based on Complex Event Processing in RFID Middleware. Proceedings of the International Conference on Research in Adaptive and Convergent Systems. :125–129.

Radio Frequency Identification (RFID) technology has been applied in many fields, such as tracking product through the supply chains, electronic passport (ePassport), proximity card, etc. Most companies will choose low-cost RFID tags. However, these RFID tags are almost no security mechanism so that criminals can easily clone these tags and get the user permissions. In this paper, we aim at more efficient detection proximity card be cloned and design a real-time intrusion detection system based on one tool of Complex Event Processing (Esper) in the RFID middleware. We will detect the cloned tags through training our system with the user's habits. When detected anomalous behavior which may clone tags have occurred, and then send the notification to user. We discuss the reliability of this intrusion detection system and describes in detail how to work.

Ghaeini, Hamid Reza, Tippenhauer, Nils Ole.  2016.  HAMIDS: Hierarchical Monitoring Intrusion Detection System for Industrial Control Systems. Proceedings of the 2Nd ACM Workshop on Cyber-Physical Systems Security and Privacy. :103–111.

In this paper, we propose a hierarchical monitoring intrusion detection system (HAMIDS) for industrial control systems (ICS). The HAMIDS framework detects the anomalies in both level 0 and level 1 of an industrial control plant. In addition, the framework aggregates the cyber-physical process data in one point for further analysis as part of the intrusion detection process. The novelty of this framework is its ability to detect anomalies that have a distributed impact on the cyber-physical process. The performance of the proposed framework evaluated as part of SWaT security showdown (S3) in which six international teams were invited to test the framework in a real industrial control system. The proposed framework outperformed other proposed academic IDS in term of detection of ICS threats during the S3 event, which was held from July 25-29, 2016 at Singapore University of Technology and Design.

2017-04-20
Chen, Aokun, Brahma, Pratik, Wu, Dapeng Oliver, Ebner, Natalie, Matthews, Brandon, Crandall, Jedidiah, Wei, Xuetao, Faloutsos, Michalis, Oliveira, Daniela.  2016.  Cross-layer Personalization As a First-class Citizen for Situation Awareness and Computer Infrastructure Security. Proceedings of the 2016 New Security Paradigms Workshop. :23–35.

We propose a new security paradigm that makes cross-layer personalization a premier component in the design of security solutions for computer infrastructure and situational awareness. This paradigm is based on the observation that computer systems have a personalized usage profile that depends on the user and his activities. Further, it spans the various layers of abstraction that make up a computer system, as if the user embedded his own DNA into the computer system. To realize such a paradigm, we discuss the design of a comprehensive and cross-layer profiling approach, which can be adopted to boost the effectiveness of various security solutions, e.g., malware detection, insider attacker prevention and continuous authentication. The current state-of-the-art in computer infrastructure defense solutions focuses on one layer of operation with deployments coming in a "one size fits all" format, without taking into account the unique way people use their computers. The key novelty of our proposal is the cross-layer personalization, where we derive the distinguishable behaviors from the intelligence of three layers of abstraction. First, we combine intelligence from: a) the user layer, (e.g., mouse click patterns); b) the operating system layer; c) the network layer. Second, we develop cross-layer personalized profiles for system usage. We will limit our scope to companies and organizations, where computers are used in a more routine and one-on-one style, before we expand our research to personally owned computers. Our preliminary results show that just the time accesses in user web logs are already sufficient to distinguish users from each other,with users of the same demographics showing similarities in their profiles. Our goal is to challenge today's paradigm for anomaly detection that seems to follow a monoculture and treat each layer in isolation. We also discuss deployment, performance overhead, and privacy issues raised by our paradigm.

2017-04-03
[Anonymous].  2017.  COCONUT: Seamless Scale-out of Network Elements. EuroSys.

A key use of software-defined networking is to enable scale-out of network data plane elements. Naively scaling networking elements, however, can cause incorrect security responses. For example, we show that an IDS system which operates correctly as a single network element can erroneously and permanently block hosts when it is replicated. Similarly, a scaled-out firewall can incorrectly block hosts.

In this paper, we provide a system, COCONUT, for seamless scale-out of network forwarding elements; that is, an SDN application programmer can program to what functionally appears to be a single forwarding element, but which may be replicated behind the scenes. To do this, we identify the key property for seamless scale out, weak causality, and guarantee it through a practical and scalable implementation of vector clocks in the data plane. We formally prove that COCONUT enables seamless scale out of networking elements, i.e., the user-perceived behavior of any COCONUT element implemented with a distributed set of concurrent replicas is provably indistinguishable from its singleton implementation. Finally, we build a prototype of COCONUT and experimentally demonstrate its correct behavior. We also show that its abstraction enables a more efficient implementation of seamless scale-out compared to a naive baseline.

This work was funded by the SoS lablet at the University of Illinois at Urbana-Champaign.

Authors: Soudeh Ghorbani, P. Brighten Godfrey (UIUC)
Yüksel, Ömer, den Hartog, Jerry, Etalle, Sandro.  2016.  Reading Between the Fields: Practical, Effective Intrusion Detection for Industrial Control Systems. Proceedings of the 31st Annual ACM Symposium on Applied Computing. :2063–2070.

Detection of previously unknown attacks and malicious messages is a challenging problem faced by modern network intrusion detection systems. Anomaly-based solutions, despite being able to detect unknown attacks, have not been used often in practice due to their high false positive rate, and because they provide little actionable information to the security officer in case of an alert. In this paper we focus on intrusion detection in industrial control systems networks and we propose an innovative, practical and semantics-aware framework for anomaly detection. The network communication model and alerts generated by our framework are userunderstandable, making them much easier to manage. At the same time the framework exhibits an excellent tradeoff between detection rate and false positive rate, which we show by comparing it with two existing payload-based anomaly detection methods on several ICS datasets.