Biblio
A wide variety of security software systems need to be integrated into a Security Orchestration Platform (SecOrP) to streamline the processes of defending against and responding to cybersecurity attacks. Lack of interpretability and interoperability among security systems are considered the key challenges to fully leverage the potential of the collective capabilities of different security systems. The processes of integrating security systems are repetitive, time-consuming and error-prone; these processes are carried out manually by human experts or using ad-hoc methods. To help automate security systems integration processes, we propose an Ontology-driven approach for Security OrchestrAtion Platform (OnSOAP). The developed solution enables interpretability, and interoperability among security systems, which may exist in operational silos. We demonstrate OnSOAP's support for automated integration of security systems to execute the incident response process with three security systems (Splunk, Limacharlie, and Snort) for a Distributed Denial of Service (DDoS) attack. The evaluation results show that OnSOAP enables SecOrP to interpret the input and output of different security systems, produce error-free integration details, and make security systems interoperable with each other to automate and accelerate an incident response process.
The smart grid is a complex cyber-physical system (CPS) that poses challenges related to scale, integration, interoperability, processes, governance, and human elements. The US National Institute of Standards and Technology (NIST) and its government, university and industry collaborators, developed an approach, called CPS Framework, to reasoning about CPS across multiple levels of concern and competency, including trustworthiness, privacy, reliability, and regulatory. The approach uses ontology and reasoning techniques to achieve a greater understanding of the interdependencies among the elements of the CPS Framework model applied to use cases. This paper demonstrates that the approach extends naturally to automated and manual decision-making for smart grids: we apply it to smart grid use cases, and illustrate how it can be used to analyze grid topologies and address concerns about the smart grid. Smart grid stakeholders, whose decision making may be assisted by this approach, include planners, designers and operators.
This article describes a privacy policy framework that can represent and reason about complex privacy policies. By using a Common Data Model together with a formal shareability theory, this framework enables the specification of expressive policies in a concise way without burdening the user with technical details of the underlying formalism. We also build a privacy policy decision engine that implements the framework and that has been deployed as the policy decision point in a novel enterprise privacy prototype system. Our policy decision engine supports two main uses: (1) interfacing with user interfaces for the creation, validation, and management of privacy policies; and (2) interfacing with systems that manage data requests and replies by coordinating privacy policy engine decisions and access to (encrypted) databases using various privacy enhancing technologies.
This paper presents PSO, an ontological framework and a methodology for improving physical security and insider threat detection. PSO can facilitate forensic data analysis and proactively mitigate insider threats by leveraging rule-based anomaly detection. In all too many cases, rule-based anomaly detection can detect employee deviations from organizational security policies. In addition, PSO can be considered a security provenance solution because of its ability to fully reconstruct attack patterns. Provenance graphs can be further analyzed to identify deceptive actions and overcome analytical mistakes that can result in bad decision-making, such as false attribution. Moreover, the information can be used to enrich the available intelligence (about intrusion attempts) that can form use cases to detect and remediate limitations in the system, such as loosely-coupled provenance graphs that in many cases indicate weaknesses in the physical security architecture. Ultimately, validation of the framework through use cases demonstrates and proves that PS0 can improve an organization's security posture in terms of physical security and insider threat detection.
In the realm of Internet of Things (IoT), information security is a critical issue. Security standards, including their assessment items, are essential instruments in the evaluation of systems security. However, a key question remains open: ``Which test cases are most effective for security assessment?'' To create security assessment designs with suitable assessment items, we need to know the security properties and assessment dimensions covered by a standard. We propose an approach for selecting and analyzing security assessment items; its foundations come from a set of assessment heuristics and it aims to increase the coverage of assessment dimensions and security characteristics in assessment designs. The main contribution of this paper is the definition of a core set of security assessment heuristics. We systematize the security assessment process by means of a conceptual formalization of the security assessment area. Our approach can be applied to security standards to select or to prioritize assessment items with respect to 11 security properties and 6 assessment dimensions. The approach is flexible allowing the inclusion of dimensions and properties. Our proposal was applied to a well know security standard (ISO/IEC 27001) and its assessment items were analyzed. The proposal is meant to support: (i) the generation of high-coverage assessment designs, which include security assessment items with assured coverage of the main security characteristics, and (ii) evaluation of security standards with respect to the coverage of security aspects.
The Semantic Web can be used to enable the interoperability of IoT devices and to annotate their functional and nonfunctional properties, including security and privacy. In this paper, we will show how to use the ontology and JSON-LD to annotate connectivity, security and privacy properties of IoT devices. Out of that, we will present our prototype for a lightweight, secure application level protocol wrapper that ensures communication consistency, secrecy and integrity for low cost IoT devices like the ESP8266 and Photon particle.
The cloud computing paradigm enables enterprises to realise significant cost savings whilst boosting their agility and productivity. However, security and privacy concerns generally deter enterprises from migrating their critical data to the cloud. One way to alleviate these concerns, hence bolster the adoption of cloud computing, is to devise adequate security policies that control the manner in which these data are stored and accessed in the cloud. Nevertheless, for enterprises to entrust these policies, a framework capable of providing assurances about their correctness is required. This work proposes such a framework. In particular, it proposes an approach that enables enterprises to define their own view of what constitutes a correct policy through the formulation of an appropriate set of well-formedness constraints. These constraints are expressed ontologically thus enabling–-by virtue of semantic inferencing–- automated reasoning about their satisfaction by the policies.
By embracing the cloud computing paradigm enterprises are able to boost their agility and productivity whilst realising significant cost savings. However, many enterprises are reluctant to adopt cloud services for supporting their critical operations due to security and privacy concerns. One way to alleviate these concerns is to devise policies that infuse suitable security controls in cloud services. This work proposes a class of ontologically-expressed rules, namely the so-called axiomatic rules, that aim at ensuring the correctness of these policies by harnessing the various knowledge artefacts that they embody. It also articulates an adequate framework for the expression of policies, one which provides ontological templates for modelling the knowledge artefacts encoded in the policies and which form the basis for the proposed axiomatic rules.
Policy design is an important part of software development. As security breaches increase in variety, designing a security policy that addresses all potential breaches becomes a nontrivial task. A complete security policy would specify rules to prevent breaches. Systematically determining which, if any, policy clause has been violated by a reported breach is a means for identifying gaps in a policy. Our research goal is to help analysts measure the gaps between security policies and reported breaches by developing a systematic process based on semantic reasoning. We propose SEMAVER, a framework for determining coverage of breaches by policies via comparison of individual policy clauses and breach descriptions. We represent a security policy as a set of norms. Norms (commitments, authorizations, and prohibitions) describe expected behaviors of users, and formalize who is accountable to whom and for what. A breach corresponds to a norm violation. We develop a semantic similarity metric for pairwise comparison between the norm that represents a policy clause and the norm that has been violated by a reported breach. We use the US Health Insurance Portability and Accountability Act (HIPAA) as a case study. Our investigation of a subset of the breaches reported by the US Department of Health and Human Services (HHS) reveals the gaps between HIPAA and reported breaches, leading to a coverage of 65%. Additionally, our classification of the 1,577 HHS breaches shows that 44% of the breaches are accidental misuses and 56% are malicious misuses. We find that HIPAA's gaps regarding accidental misuses are significantly larger than its gaps regarding malicious misuses.
The Semantic Web today is a web that allows for intelligent knowledge retrieval by means of semantically annotated tags. This web also known as Intelligent web aims to provide meaningful information to man and machines equally. However, the information thus provided lacks the component of trust. Therefore we propose a method to embed trust in semantic web documents by the concept of provenance which provides answers to who, when, where and by whom the documents were created or modified. This paper demonstrates the same using the Manchester approach of provenance implemented in a University Ontology.
In this paper, we present a security and privacy enhancement (SPE) framework for unmodified mobile operating systems. SPE introduces a new layer between the application and the operating system and does not require a device be jailbroken or utilize a custom operating system. We utilize an existing ontology designed for enforcing security and privacy policies on mobile devices to build a policy that is customizable. Based on this policy, SPE provides enhancements to native controls that currently exist on the platform for privacy and security sensitive components. SPE allows access to these components in a way that allows the framework to ensure the application is truthful in its declared intent and ensure that the user's policy is enforced. In our evaluation we verify the correctness of the framework and the computing impact on the device. Additionally, we discovered security and privacy issues in several open source applications by utilizing the SPE Framework. From our findings, if SPE is adopted by mobile operating systems producers, it would provide consumers and businesses the additional privacy and security controls they demand and allow users to be more aware of security and privacy issues with applications on their devices.
Securing their critical documents on the cloud from data threats is a major challenge faced by organizations today. Controlling and limiting access to such documents requires a robust and trustworthy access control mechanism. In this paper, we propose a semantically rich access control system that employs an access broker module to evaluate access decisions based on rules generated using the organizations confidentiality policies. The proposed system analyzes the multi-valued attributes of the user making the request and the requested document that is stored on a cloud service platform, before making an access decision. Furthermore, our system guarantees an end-to-end oblivious data transaction between the organization and the cloud service provider using oblivious storage techniques. Thus, an organization can use our system to secure their documents as well as obscure their access pattern details from an untrusted cloud service provider.
This paper describes a data driven approach to studying the science of cyber security (SoS). It argues that science is driven by data. It then describes issues and approaches towards the following three aspects: (i) Data Driven Science for Attack Detection and Mitigation, (ii) Foundations for Data Trustworthiness and Policy-based Sharing, and (iii) A Risk-based Approach to Security Metrics. We believe that the three aspects addressed in this paper will form the basis for studying the Science of Cyber Security.
Over the last decade, a globalization of the software industry took place, which facilitated the sharing and reuse of code across existing project boundaries. At the same time, such global reuse also introduces new challenges to the software engineering community, with not only components but also their problems and vulnerabilities being now shared. For example, vulnerabilities found in APIs no longer affect only individual projects but instead might spread across projects and even global software ecosystem borders. Tracing these vulnerabilities at a global scale becomes an inherently difficult task since many of the existing resources required for such analysis still rely on proprietary knowledge representation. In this research, we introduce an ontology-based knowledge modeling approach that can eliminate such information silos. More specifically, we focus on linking security knowledge with other software knowledge to improve traceability and trust in software products (APIs). Our approach takes advantage of the Semantic Web and its reasoning services, to trace and assess the impact of security vulnerabilities across project boundaries. We present a case study, to illustrate the applicability and flexibility of our ontological modeling approach by tracing vulnerabilities across project and resource boundaries.
The Sensor Web is evolving into a complex information space, where large volumes of sensor observation data are often consumed by complex applications. Provenance has become an important issue in the Sensor Web, since it allows applications to answer “what”, “when”, “where”, “who”, “why”, and “how” queries related to observations and consumption processes, which helps determine the usability and reliability of data products. This paper investigates characteristics and requirements of provenance in the Sensor Web and proposes an interoperable approach to building a provenance model for the Sensor Web. Our provenance model extends the W3C PROV Data Model with Sensor Web domain vocabularies. It is developed using Semantic Web technologies and thus allows provenance information of sensor observations to be exposed in the Web of Data using the Linked Data approach. A use case illustrates the applicability of the approach.
Semantic Web has brought forth the idea of computing with knowledge, hence, attributing the ability of thinking to machines. Knowledge Graphs represent a major advancement in the construction of the Web of Data where machines are context-aware when answering users' queries. The English Knowledge Graph was a milestone realized by Google in 2012. Even though it is a useful source of information for English users and applications, it does not offer much for the Arabic users and applications. In this paper, we investigated the different challenges and opportunities prone to the life-cycle of the construction of the Arabic Knowledge Graph (AKG) while following some best practices and techniques. Additionally, this work suggests some potential solutions to these challenges. The proprietary factor of data creates a major problem in the way of harvesting this latter. Moreover, when the Arabic data is openly available, it is generally in an unstructured form which requires further processing. The complexity of the Arabic language itself creates a further problem for any automatic or semi-automatic extraction processes. Therefore, the usage of NLP techniques is a feasible solution. Some preliminary results are presented later in this paper. The AKG has very promising outcomes for the Semantic Web in general and the Arabic community in particular. The goal of the Arabic Knowledge Graph is mainly the integration of the different isolated datasets available on the Web. Later, it can be used in both the academic (by providing a large dataset for many different research fields and enhance discovery) and commercial sectors (by improving search engines, providing metadata, interlinking businesses).
Scientific datasets and the experiments that analyze them are growing in size and complexity, and scientists are facing difficulties to share such resources. Some initiatives have emerged to try to solve this problem. One of them involves the use of scientific workflows to represent and enact experiment execution. There is an increasing number of workflows that are potentially relevant for more than one scientific domain. However, it is hard to find workflows suitable for reuse given an experiment. Creating a workflow takes time and resources, and their reuse helps scientists to build new workflows faster and in a more reliable way. Search mechanisms in workflow repositories should provide different options for workflow discovery, but it is difficult for generic repositories to provide multiple mechanisms. This paper presents WorkflowHunt, a hybrid architecture for workflow search and discovery for generic repositories, which combines keyword and semantic search to allow finding relevant workflows using different search methods. We validated our architecture creating a prototype that uses real workflows and metadata from myExperiment, and compare search results via WorkflowHunt and via myExperiment's search interface.
This brief paper reports on an early stage ongoing PhD project in the field of cyber-physical security in health care critical infrastructures. The research overall aims to develop a methodology that will increase the ability of secure recovery of health critical infrastructures. This ambitious or reckless attempt, as it is currently at an early stage, in this paper, tries to answer why cyber-physical security for health care infrastructures is important and of scientific interest. An initial PhD project methodology and expected outcomes are also discussed. The report concludes with challenges that emerge and possible future directions.
Expressing and matching the security policy of each participant accurately is the precondition to construct a secure service composition. Most schemes presently use syntactic approaches to represent and match the security policy for service composition process, which is prone to result in false negative because of lacking semantics. In this paper, a novel approach based on semantics is proposed to express and match the security policies in service composition. Through constructing a general security ontology, the definition method and matching algorithm of the semantic security policy for service composition are presented, and the matching problem of policy is translated into the subsumption reasoning problem of semantic concept. Both the theoretical analysis and experimental evaluation show that, the proposed approach can present the necessary semantic information in the representation of policy and effectively improve the accuracy of matching result, thus overcome the deficiency of the syntactic approaches, and can also simplify the definition and management of the policy at the same time, which thereby provides a more effective solution for building the secure service composition based on security policy.