Biblio
This paper investigates the impact of authentication on effective capacity (EC) of an underwater acoustic (UWA) channel. Specifically, the UWA channel is under impersonation attack by a malicious node (Eve) present in the close vicinity of the legitimate node pair (Alice and Bob); Eve tries to inject its malicious data into the system by making Bob believe that she is indeed Alice. To thwart the impersonation attack by Eve, Bob utilizes the distance of the transmit node as the feature/fingerprint to carry out feature-based authentication at the physical layer. Due to authentication at Bob, due to lack of channel knowledge at the transmit node (Alice or Eve), and due to the threshold-based decoding error model, the relevant dynamics of the considered system could be modelled by a Markov chain (MC). Thus, we compute the state-transition probabilities of the MC, and the moment generating function for the service process corresponding to each state. This enables us to derive a closed-form expression of the EC in terms of authentication parameters. Furthermore, we compute the optimal transmission rate (at Alice) through gradient-descent (GD) technique and artificial neural network (ANN) method. Simulation results show that the EC decreases under severe authentication constraints (i.e., more false alarms and more transmissions by Eve). Simulation results also reveal that the (optimal transmission rate) performance of the ANN technique is quite close to that of the GTJ method.
The wireless technology has knocked the door of tremendous usage and popularity in the last few years along with a high growth rate for new applications in the networking domain. Mobile Ad hoc Networks (MANETs) is solitary most appealing, alluring and challenging field where in the participating nodes do not require any active, existing and centralized system or rigid infrastructure for execution purpose and thus nodes have the moving capability on arbitrary basis. Radio range nodes directly communicate with each other through the wireless links whereas outside range nodes uses relay principle for communication. Though it is a rigid infrastructure less environment and has high growth rate but security is a major concern and becomes vital part of providing hostile free environment for communication. The MANET imposes several prominent challenges such as limited energy reserve, resource constraints, highly dynamic topology, sharing of wireless medium, energy inefficiency, recharging of the batteries etc. These challenges bound to make MANET more susceptible, more close to attacks and weak unlike the wired line networks. Theresearch paperismainly focused on two aspects, one is computation termination of cluster head algorithm and another is use of finite state machine for attacks identification.
VANET is one of most emerging and unique topics among the scientist and researcher. Due to its mobility, high dynamic nature and frequently changing topology not predictable, mobility attracts too much to researchers academic and industry person. In this paper, characteristics of VANET ate discussed along with its architecture, proposed work and its ends simulation with results. There are many nodes in VANET and to avoid the load on every node, clustering is applied in VANET. VANET possess the high dynamic network having continuous changing in the topology. For stability of network, a good clustering algorithm is required for enhancing the network productivity. In proposed work, a novel approach has been proposed to make cluster in VANET network and detect malicious node of network for security network.
Mobile ad hoc network (MANET) is an infrastructure less, self organizing on demand wireless communication. The nodes communicate among themselves through their radio range and nodes within the range are known as neighbor nodes. DSR (Dynamic Source Routing), a MANET reactive routing protocol identify the destination by transmitting route request (RREQ) control message into the network and establishes a path after receiving route reply (RREP) control messages. The intermediate node lies in between source to destination may also send RREP control message, weather they have path information about that destination is present into their route cache due to any previous communication. A malicious node may enter within the network and may send RREP control message to the source before original RREP is being received. After receiving RREP without knowing about the destination source starts to send data and data may reached to a different location. In this paper we proposed a novel algorithm by which a malicious node, even stay in the network and send RREP control message but before data transmission source can authenticate the destination by applying PGP (pretty Good Privacy) encryption program. In order to design our algorithm we proposed to add an extra field with RREQ control message with a unique index value (UIV) and two extra fields in RREP applied over UIV to form a random key (Rk) in such a way that, our proposal can maintained two way authorization scheme. Even a malicious node may exists into the network but before data transmission source can identified weather RREP is received by the requested destination or a by a malicious node.
A mobile ad hoc network (MANET) is a collection of mobile nodes that do not need to rely on a pre-existing network infrastructure or centralized administration. Securing MANETs is a serious concern as current research on MANETs continues to progress. Each node in a MANET acts as a router, forwarding data packets for other nodes and exchanging routing information between nodes. It is this intrinsic nature that introduces the serious security issues to routing protocols. A black hole attack is one of the well-known security threats for MANETs. A black hole is a security attack in which a malicious node absorbs all data packets by sending fake routing information and drops them without forwarding them. In order to defend against a black hole attack, in this paper we propose a new threshold-based black hole attack prevention method using multiple RREPs. To investigate the performance of the proposed method, we compared it with existing methods. Our simulation results show that the proposed method outperforms existing methods from the standpoints of packet delivery rate, throughput, and routing overhead.
Mobile Ad-hoc network is decentralized and composed of various individual devices for communicating with each other. Its distributed nature and infrastructure deficiency are the way for various attacks in the network. On implementing Intrusion detection systems (IDS) in ad-hoc node securities were enhanced by means of auditing and monitoring process. This system is composed with clustering protocols which are highly effective in finding the intrusions with minimal computation cost on power and overhead. The existing protocols were linked with the routes, which are not prominent in detecting intrusions. The poor route structure and route renewal affect the cluster hardly. By which the cluster are unstable and results in maximization processing along with network traffics. Generally, the ad hoc networks are structured with battery and rely on power limitation. It needs an active monitoring node for detecting and responding quickly against the intrusions. It can be attained only if the clusters are strong with extensive sustaining capability. Whenever the cluster changes the routes also change and the prominent processing of achieving intrusion detection will not be possible. This raises the need of enhanced clustering algorithm which solved these drawbacks and ensures the network securities in all manner. We proposed CBIDP (cluster based Intrusion detection planning) an effective clustering algorithm which is ahead of the existing routing protocol. It is persistently irrespective of routes which monitor the intrusion perfectly. This simplified clustering methodology achieves high detecting rates on intrusion with low processing as well as memory overhead. As it is irrespective of the routes, it also overcomes the other drawbacks like traffics, connections and node mobility on the network. The individual nodes in the network are not operative on finding the intrusion or malicious node, it can be achieved by collaborating the clustering with the system.
Mobile Ad-hoc Network (MANET) is an autonomous collection of mobile nodes and communicate among them in their radio range. It is an infrastructure less, bandwidth constraint multi-hop wireless network. A various routing protocol is being evolved for MANET routing and also provide security mechanism to avoid security threads. Dynamic Source Routing (DSR), one of the popular reactive routing protocols for MANET, establishes path between source to destination before data communication take place using route request (RREQ) and route reply (RREP) control messages. Although in [1] authors propose to prevent route diversion due to a malicious node in the network using group Diffie-Hellman (GDH) key management applied over source address, but if any intermediate trusted node start to misbehave then there is no prevention mechanism. Here in this paper, we applied Hash function scheme over destination address to identify the misbehaving intermediate node that can provide wrong destination address. The path information towards the destination sent by the intermediate node through RREP is exactly for the intended required destination or not, here we can identified according to our proposed algorithm and pretend for further data transmission. Our proposed algorithm proves the authenticity of the destination and also prevent from misbehaving intermediate nodes.
Security has always been a major issue in cloud. Data sources are the most valuable and vulnerable information which is aimed by attackers to steal. If data is lost, then the privacy and security of every cloud user are compromised. Even though a cloud network is secured externally, the threat of an internal attacker exists. Internal attackers compromise a vulnerable user node and get access to a system. They are connected to the cloud network internally and launch attacks pretending to be trusted users. Machine learning approaches are widely used for cloud security issues. The existing machine learning based security approaches classify a node as a misbehaving node based on short-term behavioral data. These systems do not differentiate whether a misbehaving node is a malicious node or a broken node. To address this problem, this paper proposes an Improvised Long Short-Term Memory (ILSTM) model which learns the behavior of a user and automatically trains itself and stores the behavioral data. The model can easily classify the user behavior as normal or abnormal. The proposed ILSTM not only identifies an anomaly node but also finds whether a misbehaving node is a broken node or a new user node or a compromised node using the calculated trust factor. The proposed model not only detects the attack accurately but also reduces the false alarm in the cloud network.
In recent years, the area of Mobile Ad-hoc Net-work(MANET) has received considerable attention among the research community owing to the advantages in its networking features as well as solving the unsolved issues in it. One field which needs more security is the mobile ad hoc network. Mobile Ad-hoc Network is a temporary network composed of mobile nodes, connected by wireless links, without fixed infrastructure. Network security plays a crucial role in this MANET and the traditional way of protecting the networks through firewalls and encryption software is no longer effective and sufficient. In order to provide additional security to the MANET, intrusion detection mechanisms should be added. In this paper, selective acknowledgment is used for detecting malicious nodes in the Mobile ad-hoc network is proposed. In this paper we propose a novel mechanism called selective acknowledgment for solving problems that airse with Adaptive ACKnowledgment (AACK). This mechanism is an enhancement to the AACK scheme where its Packet delivery ration and detection overhead is reduced. NS2 is used to simulate and evaluate the proposed scheme and compare it against the AACK. The obtained results show that the selective acknowledgment scheme outperforms AACK in terms of network packet delivery ratio and routing overhead.
Mobile ad hoc networks (MANET) is a type of networks that consists of autonomous nodes connecting directly without a top-down network architecture or central controller. Absence of base stations in MANET force the nodes to rely on their adjacent nodes in transmitting messages. The dynamic nature of MANET makes the relationship between nodes untrusted due to mobility of nodes. A malicious node may start denial of service attack at network layer to discard the packets instead of forwarding them to destination which is known as black hole attack. In this paper a secure and trust based approach based on ad hoc on demand distance vector (STAODV) has been proposed to improve the security of AODV routing protocol. The approach isolates the malicious nodes that try to attack the network depending on their previous information. A trust level is attached to each participating node to detect the level of trust of that node. Each incoming packet will be examined to prevent the black hole attack.
A Local Area Network (LAN) consists of wireless mobile nodes that can communicate with each other through electromagnetic radio waves. Mobile Ad hoc Network (MANET) consists of mobile nodes, the network is infrastructure less. It dynamically self organizes in arbitrary and temporary network topologies. Security is extremely vital for MANET. Attacks pave way for security. Among all the potential attacks on MANET, detection of wormhole attack is very difficult.One malicious node receives packets from a particular location, tunnels them to a different contagious nodes situated in another location of the network and distorts the full routing method. All routes are converged to the wormhole established by the attackers. The complete routing system in MANET gets redirected. Many existing ways have been surveyed to notice wormhole attack in MANET. Our proposed methodology is a unique wormhole detection and prevention algorithm that shall effectively notice the wormhole attack in theMANET. Our notion is to extend the detection as well as the quantitative relation relative to the existing ways.
A MANET is a group of wireless mobile nodes which cooperate in forwarding packets over a wireless links. Due to the lack of an infrastructure and open nature of MANET, security has become an essential and challenging issue. The mobile nature and selfishness of malicious node is a critical issue in causing the security problem. The MANETs are more defenseless to the security attacks; some of them are black hole and gray hole attacks. One of its key challenges is to find black hole attack. In this paper, researchers propose a secure AODV protocol (SAODV) for detection and removal of black hole and gray hole attacks in MANTEs. The proposed method is simulated using NS-2 and it seems that the proposed methodology is more secure than the existing one.
Mobile Ad Hoc Network (MANET) technology provides intercommunication between different nodes where no infrastructure is available for communication. MANET is attracting many researcher attentions as it is cost effective and easy for implementation. Main challenging aspect in MANET is its vulnerability. In MANET nodes are very much vulnerable to attacks along with its data as well as data flowing through these nodes. One of the main reasons of these vulnerabilities is its communication policy which makes nodes interdependent for interaction and data flow. This mutual trust between nodes is exploited by attackers through injecting malicious node or replicating any legitimate node in MANET. One of these attacks is blackhole attack. In this study, the behavior of blackhole attack is discussed and have proposed a lightweight solution for blackhole attack which uses inbuilt functions.
Mobile ad-hoc network (MANET) contains various wireless movable nodes which can communicate with each other and they don't require any centralized administrator or network infrastructure and also can communicate with full capacity because it is composed of mobile nodes. They transmit data to each other with the help of intermediate nodes by establishing a path. But sometime malicious node can easily enter in network due to the mobility of nodes. That malicious node can harm the network by dropping the data packets. These type of attack is called gray hole attack. For detection and prevention from this type of attack a mechanism is proposed in this paper. By using network simulator, the simulation will be carried out for reporting the difficulties of prevention and detection of multiple gray hole attack in the Mobile ad-hoc network (MANET). Particle Swarm Optimization is used in this paper. Because of ad-hoc nature it observers the changing values of the node, if the value is infinite then node has been attacked and it prevents other nodes from sending data to that node. In this paper, we present possible solutions to prevent the network. Firstly, find more than one route to transmit packets to destination. Second, we provide minimum time delay to deliver the packet. The simulation shows the higher throughput, less time delay and less packet drop.
Hierarchical based formation is one of the approaches widely used to minimize the energy consumption in which node with higher residual energy routes the data gathered. Several hierarchical works were proposed in the literature with two and three layered architectures. In the work presented in this paper, we propose an enhanced architecture for three layered hierarchical clustering based approach, which is referred to as enhanced three-layer hierarchical clustering approach (EHCA). The EHCA is based on an enhanced feature of the grid node in terms of its mobility. Further, in our proposed EHCA, we introduce distributed clustering technique for lower level head selection and incorporate security mechanism to detect the presence of any malicious node. We show by simulation results that our proposed EHCA reduces the energy consumption significantly and thus improves the lifetime of the network. Also, we highlight the appropriateness of the proposed EHCA for battlefield surveillance applications.
A mobile ad hoc network (MANET) is a collection of mobile nodes that do not need to rely on a pre-existing network infrastructure or centralized administration. Securing MANETs is a serious concern as current research on MANETs continues to progress. Each node in a MANET acts as a router, forwarding data packets for other nodes and exchanging routing information between nodes. It is this intrinsic nature that introduces the serious security issues to routing protocols. A black hole attack is one of the well-known security threats for MANETs. A black hole is a security attack in which a malicious node absorbs all data packets by sending fake routing information and drops them without forwarding them. In order to defend against a black hole attack, in this paper we propose a new threshold-based black hole attack prevention method. To investigate the performance of the proposed method, we compared it with existing methods. Our simulation results show that the proposed method outperforms existing methods from the standpoints of black hole node detection rate, throughput, and packet delivery rate.
Rapid advances in wireless ad hoc networks lead to increase their applications in real life. Since wireless ad hoc networks have no centralized infrastructure and management, they are vulnerable to several security threats. Malicious packet dropping is a serious attack against these networks. In this attack, an adversary node tries to drop all or partial received packets instead of forwarding them to the next hop through the path. A dangerous type of this attack is called black hole. In this attack, after absorbing network traffic by the malicious node, it drops all received packets to form a denial of service (DOS) attack. In this paper, a dynamic trust model to defend network against this attack is proposed. In this approach, a node trusts all immediate neighbors initially. Getting feedback from neighbors' behaviors, a node updates the corresponding trust value. The simulation results by NS-2 show that the attack is detected successfully with low false positive probability.