Visible to the public Biblio

Filters: Keyword is graph mining  [Clear All Filters]
2022-03-22
Love, Fred, Leopold, Jennifer, McMillin, Bruce, Su, Fei.  2021.  Discriminative Pattern Mining for Runtime Security Enforcement of Cyber-Physical Point-of-Care Medical Technology. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :1066—1072.
Point-of-care diagnostics are a key technology for various safety-critical applications from providing diagnostics in developing countries lacking adequate medical infrastructure to fight infectious diseases to screening procedures for border protection. Digital microfluidics biochips are an emerging technology that are increasingly being evaluated as a viable platform for rapid diagnosis and point-of-care field deployment. In such a technology, processing errors are inherent. Cyber-physical digital biochips offer higher reliability through the inclusion of automated error recovery mechanisms that can reconfigure operations performed on the electrode array. Recent research has begun to explore security vulnerabilities of digital microfluidic systems. This paper expands previous work that exploits vulnerabilities due to implicit trust in the error recovery mechanism. In this work, a discriminative data mining approach is introduced to identify frequent bioassay operations that can be cyber-physically attested for runtime security protection.
2020-11-23
Gao, Y., Li, X., Li, J., Gao, Y., Guo, N..  2018.  Graph Mining-based Trust Evaluation Mechanism with Multidimensional Features for Large-scale Heterogeneous Threat Intelligence. 2018 IEEE International Conference on Big Data (Big Data). :1272–1277.
More and more organizations and individuals start to pay attention to real-time threat intelligence to protect themselves from the complicated, organized, persistent and weaponized cyber attacks. However, most users worry about the trustworthiness of threat intelligence provided by TISPs (Threat Intelligence Sharing Platforms). The trust evaluation mechanism has become a hot topic in applications of TISPs. However, most current TISPs do not present any practical solution for trust evaluation of threat intelligence itself. In this paper, we propose a graph mining-based trust evaluation mechanism with multidimensional features for large-scale heterogeneous threat intelligence. This mechanism provides a feasible scheme and achieves the task of trust evaluation for TISP, through the integration of a trust-aware intelligence architecture model, a graph mining-based intelligence feature extraction method, and an automatic and interpretable trust evaluation algorithm. We implement this trust evaluation mechanism in a practical TISP (called GTTI), and evaluate the performance of our system on a real-world dataset from three popular cyber threat intelligence sharing platforms. Experimental results show that our mechanism can achieve 92.83% precision and 93.84% recall in trust evaluation. To the best of our knowledge, this work is the first to evaluate the trust level of heterogeneous threat intelligence automatically from the perspective of graph mining with multidimensional features including source, content, time, and feedback. Our work is beneficial to provide assistance on intelligence quality for the decision-making of human analysts, build a trust-aware threat intelligence sharing platform, and enhance the availability of heterogeneous threat intelligence to protect organizations against cyberspace attacks effectively.
2020-08-17
Paudel, Ramesh, Muncy, Timothy, Eberle, William.  2019.  Detecting DoS Attack in Smart Home IoT Devices Using a Graph-Based Approach. 2019 IEEE International Conference on Big Data (Big Data). :5249–5258.
The use of the Internet of Things (IoT) devices has surged in recent years. However, due to the lack of substantial security, IoT devices are vulnerable to cyber-attacks like Denial-of-Service (DoS) attacks. Most of the current security solutions are either computationally expensive or unscalable as they require known attack signatures or full packet inspection. In this paper, we introduce a novel Graph-based Outlier Detection in Internet of Things (GODIT) approach that (i) represents smart home IoT traffic as a real-time graph stream, (ii) efficiently processes graph data, and (iii) detects DoS attack in real-time. The experimental results on real-world data collected from IoT-equipped smart home show that GODIT is more effective than the traditional machine learning approaches, and is able to outperform current graph-stream anomaly detection approaches.
2020-04-03
Sattar, Naw Safrin, Arifuzzaman, Shaikh, Zibran, Minhaz F., Sakib, Md Mohiuddin.  2019.  An Ensemble Approach for Suspicious Traffic Detection from High Recall Network Alerts. {2019 IEEE International Conference on Big Data (Big Data. :4299—4308}}@inproceedings{wu_ensemble_2019.
Web services from large-scale systems are prevalent all over the world. However, these systems are naturally vulnerable and incline to be intruded by adversaries for illegal benefits. To detect anomalous events, previous works focus on inspecting raw system logs by identifying the outliers in workflows or relying on machine learning methods. Though those works successfully identify the anomalies, their models use large training set and process whole system logs. To reduce the quantity of logs that need to be processed, high recall suspicious network alert systems can be applied to preprocess system logs. Only the logs that trigger alerts are retrieved for further usage. Due to the universally usage of network traffic alerts among Security Operations Center, anomalies detection problems could be transformed to classify truly suspicious network traffic alerts from false alerts.In this work, we propose an ensemble model to distinguish truly suspicious alerts from false alerts. Our model consists of two sub-models with different feature extraction strategies to ensure the diversity and generalization. We use decision tree based boosters and deep neural networks to build ensemble models for classification. Finally, we evaluate our approach on suspicious network alerts dataset provided by 2019 IEEE BigData Cup: Suspicious Network Event Recognition. Under the metric of AUC scores, our model achieves 0.9068 on the whole testing set.
2019-02-08
Zügner, Daniel, Akbarnejad, Amir, Günnemann, Stephan.  2018.  Adversarial Attacks on Neural Networks for Graph Data. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. :2847-2856.
Deep learning models for graphs have achieved strong performance for the task of node classification. Despite their proliferation, currently there is no study of their robustness to adversarial attacks. Yet, in domains where they are likely to be used, e.g. the web, adversaries are common. Can deep learning models for graphs be easily fooled? In this work, we introduce the first study of adversarial attacks on attributed graphs, specifically focusing on models exploiting ideas of graph convolutions. In addition to attacks at test time, we tackle the more challenging class of poisoning/causative attacks, which focus on the training phase of a machine learning model.We generate adversarial perturbations targeting the node's features and the graph structure, thus, taking the dependencies between instances in account. Moreover, we ensure that the perturbations remain unnoticeable by preserving important data characteristics. To cope with the underlying discrete domain we propose an efficient algorithm Nettack exploiting incremental computations. Our experimental study shows that accuracy of node classification significantly drops even when performing only few perturbations. Even more, our attacks are transferable: the learned attacks generalize to other state-of-the-art node classification models and unsupervised approaches, and likewise are successful even when only limited knowledge about the graph is given.
2018-09-12
Hu, Shuguang, Wu, Xiaowei, Chan, T-H. Hubert.  2017.  Maintaining Densest Subsets Efficiently in Evolving Hypergraphs. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. :929–938.

In this paper we study the densest subgraph problem, which plays a key role in many graph mining applications. The goal of the problem is to find a subset of nodes that induces a graph with maximum average degree. The problem has been extensively studied in the past few decades under a variety of different settings. Several exact and approximation algorithms were proposed. However, as normal graph can only model objects with pairwise relationships, the densest subgraph problem fails in identifying communities under relationships that involve more than 2 objects, e.g., in a network connecting authors by publications. We consider in this work the densest subgraph problem in hypergraphs, which generalizes the problem to a wider class of networks in which edges might have different cardinalities and contain more than 2 nodes. We present two exact algorithms and a near-linear time r-approximation algorithm for the problem, where r is the maximum cardinality of an edge in the hypergraph. We also consider the dynamic version of the problem, in which an adversary can insert or delete an edge from the hypergraph in each round and the goal is to maintain efficiently an approximation of the densest subgraph. We present two dynamic approximation algorithms in this paper with amortized polog update time, for any ε \textbackslashtextgreater 0. For the case when there are only insertions, the approximation ratio we maintain is r(1+ε), while for the fully dynamic case, the ratio is r2(1+ε). Extensive experiments are performed on large real datasets to validate the effectiveness and efficiency of our algorithms.

2018-06-20
Tran, H., Nguyen, A., Vo, P., Vu, T..  2017.  DNS graph mining for malicious domain detection. 2017 IEEE International Conference on Big Data (Big Data). :4680–4685.

As a vital component of variety cyber attacks, malicious domain detection becomes a hot topic for cyber security. Several recent techniques are proposed to identify malicious domains through analysis of DNS data because much of global information in DNS data which cannot be affected by the attackers. The attackers always recycle resources, so they frequently change the domain - IP resolutions and create new domains to avoid detection. Therefore, multiple malicious domains are hosted by the same IPs and multiple IPs also host same malicious domains in simultaneously, which create intrinsic association among them. Hence, using the labeled domains which can be traced back from queries history of all domains to verify and figure out the association of them all. Graphs seem the best candidate to represent for this relationship and there are many algorithms developed on graph with high performance. A graph-based interface can be developed and transformed to the graph mining task of inferring graph node's reputation scores using improvements of the belief propagation algorithm. Then higher reputation scores the nodes reveal, the more malicious probabilities they infer. For demonstration, this paper proposes a malicious domain detection technique and evaluates on a real-world dataset. The dataset is collected from DNS data servers which will be used for building a DNS graph. The proposed technique achieves high performance in accuracy rates over 98.3%, precision and recall rates as: 99.1%, 98.6%. Especially, with a small set of labeled domains (legitimate and malicious domains), the technique can discover a large set of potential malicious domains. The results indicate that the method is strongly effective in detecting malicious domains.

2018-05-30
Moriano, Pablo, Pendleton, Jared, Rich, Steven, Camp, L Jean.  2017.  Insider Threat Event Detection in User-System Interactions. Proceedings of the 2017 International Workshop on Managing Insider Security Threats. :1–12.

Detection of insider threats relies on monitoring individuals and their interactions with organizational resources. Identification of anomalous insiders typically relies on supervised learning models that use labeled data. However, such labeled data is not easily obtainable. The labeled data that does exist is also limited by current insider threat detection methods and undetected insiders would not be included. These models also inherently assume that the insider threat is not rapidly evolving between model generation and use of the model in detection. Yet there is a large body of research that illustrates that the insider threat changes significantly after some types of precipitating events, such as layoffs, significant restructuring, and plant or facility closure. To capture this temporal evolution of user-system interactions, we use an unsupervised learning framework to evaluate whether potential insider threat events are triggered following precipitating events. The analysis leverages a bipartite graph of user and system interactions. The approach shows a clear correlation between precipitating events and the number of apparent anomalies. The results of our empirical analysis show a clear shift in behaviors after events which have previously been shown to increase insider activity, specifically precipitating events. We argue that this metadata about the level of insider threat behaviors validates the potential of the approach. We apply our method to a dataset that comprises interactions between engineers and software components in an enterprise version control system spanning more than 22 years. We use this unlabeled dataset and automatically detect statistically significant events. We show that there is statistically significant evidence that a subset of users diversify their committing behavior after precipitating events have been announced. Although these findings do not constitute detection of insider threat events per se, they do identify patterns of potentially malicious high-risk insider behavior. They reinforce the idea that insider operations can be motivated by the insiders' environment. Our proposed framework outperforms algorithms based on naive random approaches and algorithms using volume dependent statistics. This graph mining technique has potential for early detection of insider threat behavior in user-system interactions independent of the volume of interactions. The proposed method also enables organizations without a corpus of identified insider threats to train its own anomaly detection system.

2018-04-11
Gascon, Hugo, Grobauer, Bernd, Schreck, Thomas, Rist, Lukas, Arp, Daniel, Rieck, Konrad.  2017.  Mining Attributed Graphs for Threat Intelligence. Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy. :15–22.

Understanding and fending off attack campaigns against organizations, companies and individuals, has become a global struggle. As today's threat actors become more determined and organized, isolated efforts to detect and reveal threats are no longer effective. Although challenging, this situation can be significantly changed if information about security incidents is collected, shared and analyzed across organizations. To this end, different exchange data formats such as STIX, CyBOX, or IODEF have been recently proposed and numerous CERTs are adopting these threat intelligence standards to share tactical and technical threat insights. However, managing, analyzing and correlating the vast amount of data available from different sources to identify relevant attack patterns still remains an open problem. In this paper we present Mantis, a platform for threat intelligence that enables the unified analysis of different standards and the correlation of threat data trough a novel type-agnostic similarity algorithm based on attributed graphs. Its unified representation allows the security analyst to discover similar and related threats by linking patterns shared between seemingly unrelated attack campaigns through queries of different complexity. We evaluate the performance of Mantis as an information retrieval system for threat intelligence in different experiments. In an evaluation with over 14,000 CyBOX objects, the platform enables retrieving relevant threat reports with a mean average precision of 80%, given only a single object from an incident, such as a file or an HTTP request. We further illustrate the performance of this analysis in two case studies with the attack campaigns Stuxnet and Regin.

2018-01-10
Chen, Chen, Tong, Hanghang, Xie, Lei, Ying, Lei, He, Qing.  2017.  Cross-Dependency Inference in Multi-Layered Networks: A Collaborative Filtering Perspective. ACM Trans. Knowl. Discov. Data. 11:42:1–42:26.
The increasingly connected world has catalyzed the fusion of networks from different domains, which facilitates the emergence of a new network model—multi-layered networks. Examples of such kind of network systems include critical infrastructure networks, biological systems, organization-level collaborations, cross-platform e-commerce, and so forth. One crucial structure that distances multi-layered network from other network models is its cross-layer dependency, which describes the associations between the nodes from different layers. Needless to say, the cross-layer dependency in the network plays an essential role in many data mining applications like system robustness analysis and complex network control. However, it remains a daunting task to know the exact dependency relationships due to noise, limited accessibility, and so forth. In this article, we tackle the cross-layer dependency inference problem by modeling it as a collective collaborative filtering problem. Based on this idea, we propose an effective algorithm F\textbackslashtextlessscp;\textbackslashtextgreaterascinate\textbackslashtextless/scp;\textbackslashtextgreater that can reveal unobserved dependencies with linear complexity. Moreover, we derive F\textbackslashtextlessscp;\textbackslashtextgreaterascinate\textbackslashtextless/scp;\textbackslashtextgreater-ZERO, an online variant of F\textbackslashtextlessscp;\textbackslashtextgreaterascinate\textbackslashtextless/scp;\textbackslashtextgreater that can respond to a newly added node timely by checking its neighborhood dependencies. We perform extensive evaluations on real datasets to substantiate the superiority of our proposed approaches.
2017-09-19
Rahbarinia, Babak, Balduzzi, Marco, Perdisci, Roberto.  2016.  Real-Time Detection of Malware Downloads via Large-Scale URL-≫File-≫Machine Graph Mining. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :783–794.

In this paper we propose Mastino, a novel defense system to detect malware download events. A download event is a 3-tuple that identifies the action of downloading a file from a URL that was triggered by a client (machine). Mastino utilizes global situation awareness and continuously monitors various network- and system-level events of the clients' machines across the Internet and provides real time classification of both files and URLs to the clients upon submission of a new, unknown file or URL to the system. To enable detection of the download events, Mastino builds a large download graph that captures the subtle relationships among the entities of download events, i.e. files, URLs, and machines. We implemented a prototype version of Mastino and evaluated it in a large-scale real-world deployment. Our experimental evaluation shows that Mastino can accurately classify malware download events with an average of 95.5% true positive (TP), while incurring less than 0.5% false positives (FP). In addition, we show the Mastino can classify a new download event as either benign or malware in just a fraction of a second, and is therefore suitable as a real time defense system.

2017-08-02
Jang, Min-Hee, Faloutsos, Christos, Kim, Sang-Wook, Kang, U, Ha, Jiwoon.  2016.  PIN-TRUST: Fast Trust Propagation Exploiting Positive, Implicit, and Negative Information. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. :629–638.

Given "who-trusts/distrusts-whom" information, how can we propagate the trust and distrust? With the appearance of fraudsters in social network sites, the importance of trust prediction has increased. Most such methods use only explicit and implicit trust information (e.g., if Smith likes several of Johnson's reviews, then Smith implicitly trusts Johnson), but they do not consider distrust. In this paper, we propose PIN-TRUST, a novel method to handle all three types of interaction information: explicit trust, implicit trust, and explicit distrust. The novelties of our method are the following: (a) it is carefully designed, to take into account positive, implicit, and negative information, (b) it is scalable (i.e., linear on the input size), (c) most importantly, it is effective and accurate. Our extensive experiments with a real dataset, Epinions.com data, of 100K nodes and 1M edges, confirm that PIN-TRUST is scalable and outperforms existing methods in terms of prediction accuracy, achieving up to 50.4 percentage relative improvement. 

2017-05-16
Jang, Min-Hee, Kim, Sang-Wook, Ha, Jiwoon.  2016.  Effectiveness of Reverse Edges and Uncertainty in PIN-TRUST for Trust Prediction. Proceedings of the Sixth International Conference on Emerging Databases: Technologies, Applications, and Theory. :81–85.

Recently, PIN-TRUST, a method to predict future trust relationships between users is proposed. PIN-TRUST out-performs existing trust prediction methods by exploiting all types of interactions between users and the reciprocation of ones. In this paper, we validate whether its consideration on the reciprocation of interactions is really effective in trust prediction. Furthermore, we consider a new concept, the "uncertainty" of untrustworthy users that is devised to reflect the difficulty on modeling the activities of untrustworthy users in PIN-TRUST. Then, we also validate the effectiveness this uncertainty concepts. Through the validation, we reveal that the consideration of the reciprocation of interactions is effective for trust prediction with PIN-TRUST, and it is necessary to regard the uncertainty of untrustworthy users same as that of other users.