Biblio
One important aspect in protecting Cyber Physical System (CPS) is ensuring that the proper control and measurement signals are propagated within the control loop. The CPS research community has been developing a large set of check blocks that can be integrated within the control loop to check signals against various types of attacks (e.g., false data injection attacks). Unfortunately, it is not possible to integrate all these “checks” within the control loop as the overhead introduced when checking signals may violate the delay constraints of the control loop. Moreover, these blocks do not completely operate in isolation of each other as dependencies exist among them in terms of their effectiveness against detecting a subset of attacks. Thus, it becomes a challenging and complex problem to assign the proper checks, especially with the presence of a rational adversary who can observe the check blocks assigned and optimizes her own attack strategies accordingly. This paper tackles the inherent state-action space explosion that arises in securing CPS through developing DeepBLOC (DB)-a framework in which Deep Reinforcement Learning algorithms are utilized to provide optimal/sub-optimal assignments of check blocks to signals. The framework models stochastic games between the adversary and the CPS defender and derives mixed strategies for assigning check blocks to ensure the integrity of the propagated signals while abiding to the real-time constraints dictated by the control loop. Through extensive simulation experiments and a real implementation on a water purification system, we show that DB achieves assignment strategies that outperform other strategies and heuristics.
Since remote ages, queues and delays have been a rather exasperating reality of human daily life. Today, they pursue us everywhere: in technical, social, socio-technical, and even control systems, dramatically deteriorating their performance. In this variety, it is the computer systems that are sure to cause the growing anxiety in our digital era. Although for our everyday Internet surfing, experiencing long-lasting and annoying delays is an unpleasant but not dangerous situation, for industrial control systems, especially those dealing with critical infrastructures, such behavior is unacceptable. The article presents a deterministic approach to solving some digital control system problems associated with delays and backlogs. Being based on Network calculus, in contrast to statistical methods of Queuing theory, it provides worst-case results, which are eminently desirable for critical infrastructures. The article covers the basics of a theory of deterministic queuing systems Network calculus, its evolution regarding the relationship between backlog bound and delay, and a technique for handling empirical data. The problems being solved by the deterministic approach: standard calculation of network performance measures, estimation of database maximum updating time, and cybersecurity assessment including such issues as the CIA triad representation, operational technology influence, and availability understanding focusing on its correlation with a delay are thoroughly discussed as well.
Cybersecurity is a major issue today. It is predicted that cybercrime will cost the world \$6 trillion annually by 2021. It is important to make logins secure as well as to make advances in security in order to catch cybercriminals. This paper will design and create a device that will use Fuzzy logic to identify a person by the rhythm and frequency of their typing. The device will take data from a user from a normal password entry session. This data will be used to make a Fuzzy system that will be able to identify the user by their typing speed. An application of this project could be used to make a more secure log-in system for a user. The log-in system would not only check that the correct password was entered but also that the rhythm of how the password was typed matched the user. Another application of this system could be used to help catch cybercriminals. A cybercriminal may have a certain rhythm at which they type at and this could be used like a fingerprint to help officials locate cybercriminals.
Wide integration of information and communication technology (ICT) in modern power grids has brought many benefits as well as the risk of cyber attacks. A critical step towards defending grid cyber security is to understand the cyber-physical causal chain, which describes the progression of intrusion in cyber-space leading to the formation of consequences on the physical power grid. In this paper, we develop an attack vector for a time delay attack at load frequency control in the power grid. Distinct from existing works, which are separately focused on cyber intrusion, grid response, or testbed validation, the proposed attack vector for the first time provides a full cyber-physical causal chain. It targets specific vulnerabilities in the protocols, performs a denial-of-service (DoS) attack, induces the delays in control loop, and destabilizes grid frequency. The proposed attack vector is proved in theory, presented as an attack tree, and validated in an experimental environment. The results will provide valuable insights to develop security measures and robust controls against time delay attacks.
A time-delay switch (TDS) cyber attack is a deliberate attempt by malicious adversaries aiming at destabilizing a power system by impeding the communication signals to/from the centralized controller from/to the network sensors and generating stations that participate in the load frequency control (LFC). A TDS cyber attack can be targeting the sensing loops (transmitting network measurements to the centralized controller) or the control signals dispatched from the centralized controller to the governor valves of the generating stations. A resilient TDS control strategy is proposed and developed in this work that thwarts network instabilities that are caused by delays in the sensing loops, and control commands, and guarantees normal operation of the LFC mechanism. This will be achieved by augmenting the telemetered control commands with locally generated feedback control laws (i.e., “decentralized” control commands) taking measurements that are available and accessible at the power generating stations (locally) independent from all the telemetered signals to/from the centralized controller. Our objective is to devise a controller that is capable of circumventing all types of TDS and DoS (Denial of Service) cyber attacks as well as a broad class of False Data Injection (FDI) cyber attacks.
The mechanism of peers randomly choosing logical neighbors without any knowledge about underlying physical topology can cause a delay overhead in information propagation which makes the system vulnerable to double spend attacks. This paper introduces a proximity-aware extensions to the current Bitcoin protocol, named Master Node Based Clustering (MNBC). The ultimate purpose of the proposed protocol is to improve the information propagation delay in the Bitcoin network.
Advertisement sharing in vehicular network through vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication is a fascinating in-vehicle service for advertisers and the users due to multiple reasons. It enable advertisers to promote their product or services in the region of their interest. Also the users get to receive more relevant ads. Usually, users tend to contribute in dissemination of ads if their privacy is preserved and if some incentive is provided. Recent researches have focused on enabling both of the parameters for the users by developing fair incentive mechanism which preserves privacy by using Zero-Knowledge Proof of Knowledge (ZKPoK) (Ming et al., 2019). However, the anonymity provided by ZKPoK can introduce internal attacker scenarios in the network due to which authenticated users can disseminate fake ads in the network without payment. As the existing scheme uses certificate-less cryptography, due to which malicious users cannot be removed from the network. In order to resolve these challenges, we employed conditional anonymity and introduced Monitoring Authority (MA) in the system. In our proposed scheme, the pseudonyms are assigned to the vehicles while their real identities are stored in Certification Authority (CA) in encrypted form. The pseudonyms are updated after a pre-defined time threshold to prevent behavioural privacy leakage. We performed security and performance analysis to show the efficiency of our proposed system.
With the growing use of the Robot Operating System (ROS), it can be argued that it has become a de-facto framework for developing robotic solutions. ROS is used to build robotic applications for industrial automation, home automation, medical and even automatic robotic surveillance. However, whenever ROS is utilized, security is one of the main concerns that needs to be addressed in order to ensure a secure network communication of robots. Cyber-attacks may hinder evolution and adaptation of most ROS-enabled robotic systems for real-world use over the Internet. Thus, it is important to address and prevent security threats associated with the use of ROS-enabled applications. In this paper, we propose a novel approach for securing ROS-enabled robotic system by integrating ROS with the Message Queuing Telemetry Transport (MQTT) protocol. We manage to secure robots' network communications by providing authentication and data encryption, therefore preventing man-in-the-middle and hijacking attacks. We also perform real-world experiments to assess how the performance of a ROS-enabled robotic surveillance system is affected by the proposed approach.