Biblio
Dependency on cloud computing are increasing day by day due to its beneficial aspects. As day by day we are relying on cloud computing, the securities issues are coming up. There are lots of security protocols but now-a-days those protocol are not secured enough to provide a high security. One of those protocols which were once highly secured, is Kerberos authentication protocol. With the advancement of technology, Kerberos authentication protocol is no longer as secured as it was before. Many authors have thought about the improvement of Kerberos authentication protocol and consequently they have proposed different types of protocol models by using a renowned public key cryptography named RSA cryptography. Though RSA cryptography is good to some extent but this cryptography has some flaws that make this cryptography less secured as well as less efficient. In this paper, we are combining Elliptic Curve Cryptography (ECC) as well as Threshold Cryptography to create a new version of Kerberos authentication protocol. Our proposed model will provide secure transaction of data which will not only be hard to break but also increase memory efficiency, cost efficiency, and reduce the burden of computation.
Cloud Computing is an important term of modern technology. The usefulness of Cloud is increasing day by day and simultaneously more and more security problems are arising as well. Two of the major threats of Cloud are improper authentication and multi-tenancy. According to the specialists both pros and cons belong to multi-tenancy. There are security protocols available but it is difficult to claim these protocols are perfect and ensure complete protection. The purpose of this paper is to propose an integrated model to ensure better Cloud security for Authentication and multi-tenancy. Multi-tenancy means sharing of resources and virtualization among clients. Since multi-tenancy allows multiple users to access same resources simultaneously, there is high probability of accessing confidential data without proper privileges. Our model includes Kerberos authentication protocol to enhance authentication security. During our research on Kerberos we have found some flaws in terms of encryption method which have been mentioned in couple of IEEE conference papers. Pondering about this complication we have elected Elliptic Curve Cryptography. On the other hand, to attenuate arose risks due to multi-tenancy we are proposing a Resource Allocation Manager Unit, a Control Database and Resource Allocation Map. This part of the model will perpetuate resource allocation for the users.
Cloud computing is a standard architecture for providing computing services among servers and cloud user (CU) for preserving data from unauthorized users. Therefore, the user authentication is more reliable to ensure cloud services accessed only by a genuine user. To improve the authentication accuracy, Tiger Hash-based Kerberos Biometric Blowfish Authentication (TH-KBBA) Mechanism is introduced for accessing data from server. It comprises three steps, namely Registration, Authentication and Ticket Granting. In the Registration process, client enrolls user details and stores on cloud server (CS) using tiger hashing function. User ID and password is given by CS after registration. When client wants to access data from CS, authentication server (AS) verifies user identity by sending a message. When authenticity is verified, AS accepts user as authenticated user and convinces CS that user is authentic. For convincing process, AS generates a ticket and encrypted using Blowfish encryption. Encrypted ticket is sent back to user. Then, CU sends message to server containing users ID and encrypted ticket. Finally, the server decrypts ticket using blowfish decryption and verifies the user ID. If these two ID gets matched, the CS grants requested data to the user. Experimental evaluation of TH-KBBA mechanism and existing methods are carried out with different factors such as Authentication accuracy, authentications time and confidentiality rate with respect to a number of CUs and data.
Through the internet and local networks, IoT devices exchange data. Most of the IoT devices are low-power devices, meaning that they are designed to use less electric power. To secure data transmission, it is required to encrypt the messages. Encryption and decryption of messages are computationally expensive activities, thus require considerable amount of processing and memory power which is not affordable to low-power IoT devices. Therefore, not all secure transmission protocols are low-power IoT devices friendly. This study proposes a secure data transmission protocol for low-power IoT devices. The design inherits some features in Kerberos and onetime password concepts. The protocol is designed for devices which are connected to each other, as in a fully connected network topology. The protocol uses symmetric key cryptography under the assumption of that the device specific keys are never being transmitted over the network. It resists DoS, message replay and Man-of-the-middle attacks while facilitating the key security concepts such as Authenticity, Confidentiality and Integrity. The designed protocol uses less number of encryption/decryption cycles and maintain session based strong authentication to facilitate secure data transmission among nodes.
Kerberos is a third party and widely used authentication protocol, in which it enables computers to connect securely using a single sign-on over an insecure channel. It proves the identity of clients and encrypts all the communications between them to ensure data privacy and integrity. Typically, Kerberos composes of three communication phases to establish a secure session between any two clients. The authentication is based on a password-based scheme, in which it is a secret long-term key shared between the client and the Kerberos. Therefore, Kerberos suffers from a password-guessing attack, the main drawback of Kerberos. In this paper, we overcome this limitation by modifying the first initial phase using the virtual password and biometric data. In addition, the proposed protocol provides a strong authentication scenario against multiple types of attacks.
We present the IT solution for remote modeling of cryptographic protocols and other cryptographic primitives and a number of education-oriented capabilities based on them. These capabilities are provided at the Department of Mathematical Modeling using the MPEI algebraic processor, and allow remote participants to create automata models of cryptographic protocols, use and manage them in the modeling process. Particular attention is paid to the IT solution for modeling of the private communication and key distribution using the processor combined with the Kerberos protocol. This allows simulation and studying of key distribution protocols functionality on remote computers via the Internet. The importance of studying cryptographic primitives for future IT specialists is emphasized.
In order to solve the problem of vulnerable password guessing attacks caused by dictionary attacks, replay attacks in the authentication process, and man-in-the-middle attacks in the existing wireless local area network in terms of security authentication, we make some improvements to the 802.1X / EAP authentication protocol based on the study of the current IEEE802.11i security protocol with high security. After introducing the idea of Kerberos protocol authentication and applying the idea in the authentication process of 802.1X / EAP, a new protocol of Kerberos extensible authentication protocol (KEAP) is proposed. Firstly, the protocol introduces an asymmetric key encryption method, uses public key encryption during data transmission, and the receiver uses the corresponding private key for decryption. With unidirectional characteristics and high security, the encryption can avoid password guessing attacks caused by dictionary attacks as much as possible. Secondly, aiming at the problem that the request message sent from the client to the authentication server is vulnerable to replay attacks, the protocol uses a combination of the message sequence number and the random number, and the message serial number is added to the request message sent from the client to the authentication server. And establish a list database for storing message serial number and random number in the authentication server. After receiving a transfer message, the serial number and the random number are extracted and compared with the values in the list database to distinguish whether it is a retransmission message. Finally, the protocol introduces a keychain mechanism and uses an irreversible Hash function to encrypt the final authentication result, thereby effectively solving the man-in-the-middle attack by the pretender. The experiment uses the OPNET 14.5 simulation platform to model the KEAP protocol and simulate simulation attacks, and compares it with the current more common EAP-TLS authentication protocol. Experimental results show that the average traffic of the KEAP protocol is at least 14.74% higher than the EAP-TLS authentication protocol, and the average bit error rate is reduced by at least 24.00%.
Companies analyse large amounts of data on clusters of machines, using big data analytic tools such as Apache Spark and Apache Flink to analyse the data. Big data analytic tools are mainly tested regarding speed and reliability. Efforts about Security and thus authentication are spent only at second glance. In such big data analytic tools, authentication is achieved with the help of the Kerberos protocol that is basically built as authentication on top of big data analytic tools. However, Kerberos is vulnerable to attacks, and it lacks providing high availability when users are all over the world. To improve the authentication, this work presents first an analysis of the authentication in Hadoop and the data analytic tools. Second, we propose a concept to deploy Transport Layer Security (TLS) not only for the security of data transportation but as well for authentication within the big data tools. This is done by establishing the connections using certificates with a short lifetime. The proof of concept is realized in Apache Spark, where Kerberos is replaced by the method proposed. We deploy new short living certificates for authentication that are less vulnerable to abuse. With our approach the requirements of the industry regarding multi-factor authentication and scalability are met.
It is expected that DRAM memory will be augmented, and perhaps eventually replaced, by one of several up-and-coming memory technologies. These are all non-volatile, in that they retain their contents without power. This allows primary memory to be used as a fast disk replacement. It also enables more aggressive programming models that directly leverage persistence of primary memory. However, it is challenging to maintain consistency of memory in such an environment. There is no consensus on the right programming model for doing so, and subtle differences can have large, and sometimes surprising, effects on the implementation and its performance. The existing literature describes multiple programming systems that provide point solutions to the selective persistence for user data structures. Real progress in this area requires a choice of programming model, which we cannot reasonably make without a real understanding of the design space. Point solutions are insufficient. We systematically explore what we consider to be the most promising part of the space, precisely defining semantics and identifying implementation costs. This allows us to be much more explicit and precise about semantic and implementation trade-offs that were usually glossed over in prior work. It also exposes some promising new design alternatives.
k-anonymity is an efficient way to anonymize the relational data to protect privacy against re-identification attacks. For the purpose of k-anonymity on transaction data, each item is considered as the quasi-identifier attribute, thus increasing high dimension problem as well as the computational complexity and information loss for anonymity. In this paper, an efficient anonymity system is designed to not only anonymize transaction data with lower information loss but also reduce the computational complexity for anonymity. An extensive experiment is carried to show the efficiency of the designed approach compared to the state-of-the-art algorithms for anonymity in terms of runtime and information loss. Experimental results indicate that the proposed anonymous system outperforms the compared algorithms in all respects.
In order to identify a personalized story, suitable for the needs of large masses of visitors and tourists, our work has been aimed at the definition of appropriate models and solutions of fruition that make the visit experience more appealing and immersive. This paper proposes the characteristic functionalities of narratology and of the techniques of storytelling for the dynamic creation of experiential stories on a sematic basis. Therefore, it represents a report about sceneries, implementation models and architectural and functional specifications of storytelling for the dynamic creation of functional contents for the visit. Our purpose is to indicate an approach for the realization of a dynamic storytelling engine that can allow the dynamic supply of narrative contents, not necessarily predetermined and pertinent to the needs and the dynamic behaviors of the users. In particular, we have chosen to employ an adaptive, social and mobile approach, using an ontological model in order to realize a dynamic digital storytelling system, able to collect and elaborate social information and contents about the users giving them a personalized story on the basis of the place they are visiting. A case of study and some experimental results are presented and discussed.
The ever increasing interest in semantic technologies and the availability of several open knowledge sources have fueled recent progress in the field of recommender systems. In this paper we feed recommender systems with features coming from the Linked Open Data (LOD) cloud - a huge amount of machine-readable knowledge encoded as RDF statements - with the aim of improving recommender systems effectiveness. In order to exploit the natural graph-based structure of RDF data, we study the impact of the knowledge coming from the LOD cloud on the overall performance of a graph-based recommendation algorithm. In more detail, we investigate whether the integration of LOD-based features improves the effectiveness of the algorithm and to what extent the choice of different feature selection techniques influences its performance in terms of accuracy and diversity. The experimental evaluation on two state of the art datasets shows a clear correlation between the feature selection technique and the ability of the algorithm to maximize a specific evaluation metric. Moreover, the graph-based algorithm leveraging LOD-based features is able to overcome several state of the art baselines, such as collaborative filtering and matrix factorization, thus confirming the effectiveness of the proposed approach.