Visible to the public Biblio

Found 609 results

Filters: Keyword is Cyber-physical systems  [Clear All Filters]
2018-02-06
Choucri, N., Agarwal, G..  2017.  Analytics for Smart Grid Cybersecurity. 2017 IEEE International Symposium on Technologies for Homeland Security (HST). :1–3.

Guidelines, directives, and policy statements are usually presented in ``linear'' text form - word after word, page after page. However necessary, this practice impedes full understanding, obscures feedback dynamics, hides mutual dependencies and cascading effects and the like, - even when augmented with tables and diagrams. The net result is often a checklist response as an end in itself. All this creates barriers to intended realization of guidelines and undermines potential effectiveness. We present a solution strategy using text as ``data'', transforming text into a structured model, and generate a network views of the text(s), that we then can use for vulnerability mapping, risk assessments and control point analysis. We apply this approach using two NIST reports on cybersecurity of smart grid, more than 600 pages of text. Here we provide a synopsis of approach, methods, and tools. (Elsewhere we consider (a) system-wide level, (b) aviation e-landscape, (c) electric vehicles, and (d) SCADA for smart grid).

2018-02-02
Brunner, M., Huber, M., Sauerwein, C., Breu, R..  2017.  Towards an Integrated Model for Safety and Security Requirements of Cyber-Physical Systems. 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :334–340.

Increasing interest in cyber-physical systems with integrated computational and physical capabilities that can interact with humans can be identified in research and practice. Since these systems can be classified as safety- and security-critical systems the need for safety and security assurance and certification will grow. Moreover, these systems are typically characterized by fragmentation, interconnectedness, heterogeneity, short release cycles, cross organizational nature and high interference between safety and security requirements. These properties combined with the assurance of compliance to multiple standards, carrying out certification and re-certification, and the lack of an approach to model, document and integrate safety and security requirements represent a major challenge. In order to address this gap we developed a domain agnostic approach to model security and safety requirements in an integrated view to support certification processes during design and run-time phases of cyber-physical systems.

Paul-Pena, D., Krishnamurthy, P., Karri, R., Khorrami, F..  2017.  Process-aware side channel monitoring for embedded control system security. 2017 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC). :1–6.

Cyber-physical systems (CPS) are interconnections of heterogeneous hardware and software components (e.g., sensors, actuators, physical systems/processes, computational nodes and controllers, and communication subsystems). Increasing network connectivity of CPS computational nodes facilitates maintenance and on-demand reprogrammability and reduces operator workload. However, such increasing connectivity also raises the potential for cyber-attacks that attempt unauthorized modifications of run-time parameters or control logic in the computational nodes to hamper process stability or performance. In this paper, we analyze the effectiveness of real-time monitoring using digital and analog side channels. While analog side channels might not typically provide sufficient granularity to observe each iteration of a periodic loop in the code in the CPS device, the temporal averaging inherent to side channel sensory modalities enables observation of persistent changes to the contents of a computational loop through their resulting effect on the level of activity of the device. Changes to code can be detected by observing readings from side channel sensors over a period of time. Experimental studies are performed on an ARM-based single board computer.

Yan, Y., Antsaklis, P., Gupta, V..  2017.  A resilient design for cyber physical systems under attack. 2017 American Control Conference (ACC). :4418–4423.

One challenge for engineered cyber physical systems (CPSs) is the possibility for a malicious intruder to change the data transmitted across the cyber channel as a means to degrade the performance of the physical system. In this paper, we consider a data injection attack on a cyber physical system. We propose a hybrid framework for detecting the presence of an attack and operating the plant in spite of the attack. Our method uses an observer-based detection mechanism and a passivity balance defense framework in the hybrid architecture. By switching the controller, passivity and exponential stability are established under the proposed framework.

Whelihan, D., Vai, M., Evanich, N., Kwak, K. J., Li, J., Britton, M., Frantz, B., Hadcock, D., Lynch, M., Schafer, D. et al..  2017.  Designing agility and resilience into embedded systems. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :249–254.

Cyber-Physical Systems (CPS) such as Unmanned Aerial Systems (UAS) sense and actuate their environment in pursuit of a mission. The attack surface of these remotely located, sensing and communicating devices is both large, and exposed to adversarial actors, making mission assurance a challenging problem. While best-practice security policies should be followed, they are rarely enough to guarantee mission success as not all components in the system may be trusted and the properties of the environment (e.g., the RF environment) may be under the control of the attacker. CPS must thus be built with a high degree of resilience to mitigate threats that security cannot alleviate. In this paper, we describe the Agile and Resilient Embedded Systems (ARES) methodology and metric set. The ARES methodology pursues cyber security and resilience (CSR) as high level system properties to be developed in the context of the mission. An analytic process guides system developers in defining mission objectives, examining principal issues, applying CSR technologies, and understanding their interactions.

Choi, S., Chavez, A., Torres, M., Kwon, C., Hwang, I..  2017.  Trustworthy design architecture: Cyber-physical system. 2017 International Carnahan Conference on Security Technology (ICCST). :1–9.

Conventional cyber defenses require continual maintenance: virus, firmware, and software updates; costly functional impact tests; and dedicated staff within a security operations center. The conventional defenses require access to external sources for the latest updates. The whitelisted system, however, is ideally a system that can sustain itself freed from external inputs. Cyber-Physical Systems (CPS), have the following unique traits: digital commands are physically observable and verifiable; possible combinations of commands are limited and finite. These CPS traits, combined with a trust anchor to secure an unclonable digital identity (i.e., digitally unclonable function [DUF] - Patent Application \#15/183,454; CodeLock), offers an excellent opportunity to explore defenses built on whitelisting approach called “Trustworthy Design Architecture (TDA).” There exist significant research challenges in defining what are the physically verifiable whitelists as well as the criteria for cyber-physical traits that can be used as the unclonable identity. One goal of the project is to identify a set of physical and/or digital characteristics that can uniquely identify an endpoint. The measurements must have the properties of being reliable, reproducible, and trustworthy. Given that adversaries naturally evolve with any defense, the adversary will have the goal of disrupting or spoofing this process. To protect against such disruptions, we provide a unique system engineering technique, when applied to CPSs (e.g., nuclear processing facilities, critical infrastructures), that will sustain a secure operational state without ever needing external information or active inputs from cybersecurity subject-matter experts (i.e., virus updates, IDS scans, patch management, vulnerability updates). We do this by eliminating system dependencies on external sources for protection. Instead, all internal co- munication is actively sealed and protected with integrity, authenticity and assurance checks that only cyber identities bound to the physical component can deliver. As CPSs continue to advance (i.e., IoTs, drones, ICSs), resilient-maintenance free solutions are needed to neutralize/reduce cyber risks. TDA is a conceptual system engineering framework specifically designed to address cyber-physical systems that can potentially be maintained and operated without the persistent need or demand for vulnerability or security patch updates.

2018-01-16
Craggs, Barnaby, Rashid, Awais.  2017.  Smart Cyber-physical Systems: Beyond Usable Security to Security Ergonomics by Design. Proceedings of the 3rd International Workshop on Software Engineering for Smart Cyber-Physical Systems. :22–25.

Securing cyber-physical systems is hard. They are complex infrastructures comprising multiple technological artefacts, designers, operators and users. Existing research has established the security challenges in such systems as well as the role of usable security to support humans in effective security decisions and actions. In this paper we focus on smart cyber-physical systems, such as those based on the Internet of Things (IoT). Such smart systems aim to intelligently automate a variety of functions, with the goal of hiding that complexity from the user. Furthermore, the interactions of the user with such systems are more often implicit than explicit, for instance, a pedestrian with wearables walking through a smart city environment will most likely interact with the smart environment implicitly through a variety of inferred preferences based on previously provided or automatically collected data. The key question that we explore is that of empowering software engineers to pragmatically take into account how users make informed security choices about their data and information in such a pervasive environment. We discuss a range of existing frameworks considering the impact of automation on user behaviours and argue for the need of a shift–-from usability to security ergonomics as a key requirement when designing and implementing security features in smart cyber-physical environments. Of course, the considerations apply more broadly than security but, in this paper, we focus only on security as a key concern.

2018-01-10
Ahmed, C. M., Mathur, A. P..  2017.  Hardware Identification via Sensor Fingerprinting in a Cyber Physical System. 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :517–524.

A lot of research in security of cyber physical systems focus on threat models where an attacker can spoof sensor readings by compromising the communication channel. A little focus is given to attacks on physical components. In this paper a method to detect potential attacks on physical components in a Cyber Physical System (CPS) is proposed. Physical attacks are detected through a comparison of noise pattern from sensor measurements to a reference noise pattern. If an adversary has physically modified or replaced a sensor, the proposed method issues an alert indicating that a sensor is probably compromised or is defective. A reference noise pattern is established from the sensor data using a deterministic model. This pattern is referred to as a fingerprint of the corresponding sensor. The fingerprint so derived is used as a reference to identify measured data during the operation of a CPS. Extensive experimentation with ultrasonic level sensors in a realistic water treatment testbed point to the effectiveness of the proposed fingerprinting method in detecting physical attacks.

2017-12-28
Amin, S..  2016.  Security games on infrastructure networks. 2016 Science of Security for Cyber-Physical Systems Workshop (SOSCYPS). :1–4.

The theory of robust control models the controller-disturbance interaction as a game where disturbance is nonstrategic. The proviso of a deliberately malicious (strategic) attacker should be considered to increase the robustness of infrastructure systems. This has become especially important since many IT systems supporting critical functionalities are vulnerable to exploits by attackers. While the usefulness of game theory methods for modeling cyber-security is well established in the literature, new game theoretic models of cyber-physical security are needed for deriving useful insights on "optimal" attack plans and defender responses, both in terms of allocation of resources and operational strategies of these players. This whitepaper presents some progress and challenges in using game-theoretic models for security of infrastructure networks. Main insights from the following models are presented: (i) Network security game on flow networks under strategic edge disruptions; (ii) Interdiction problem on distribution networks under node disruptions; (iii) Inspection game to monitor commercial non-technical losses (e.g. energy diversion); and (iv) Interdependent security game of networked control systems under communication failures. These models can be used to analyze the attacker-defender interactions in a class of cyber-physical security scenarios.

Datta, A., Kar, S., Sinopoli, B., Weerakkody, S..  2016.  Accountability in cyber-physical systems. 2016 Science of Security for Cyber-Physical Systems Workshop (SOSCYPS). :1–3.

Our position is that a key component of securing cyber-physical systems (CPS) is to develop a theory of accountability that encompasses both control and computing systems. We envision that a unified theory of accountability in CPS can be built on a foundation of causal information flow analysis. This theory will support design and analysis of mechanisms at various stages of the accountability regime: attack detection, responsibility-assignment (e.g., attack identification or localization), and corrective measures (e.g., via resilient control) As an initial step in this direction, we summarize our results on attack detection in control systems. We use the Kullback-Liebler (KL) divergence as a causal information flow measure. We then recover, using information flow analyses, a set of existing results in the literature that were previously proved using different techniques. These results cover passive detection, stealthy attack characterization, and active detection. This research direction is related to recent work on accountability in computational systems [1], [2], [3], [4]. We envision that by casting accountability theories in computing and control systems in terms of causal information flow, we can provide a common foundation to develop a theory for CPS that compose elements from both domains.

Lucia, W., Sinopoli, B., Franze, G..  2016.  A set-theoretic approach for secure and resilient control of Cyber-Physical Systems subject to false data injection attacks. 2016 Science of Security for Cyber-Physical Systems Workshop (SOSCYPS). :1–5.

In this paper a novel set-theoretic control framework for Cyber-Physical Systems is presented. By resorting to set-theoretic ideas, an anomaly detector module and a control remediation strategy are formally derived with the aim to contrast cyber False Data Injection (FDI) attacks affecting the communication channels. The resulting scheme ensures Uniformly Ultimate Boundedness and constraints fulfillment regardless of any admissible attack scenario.

Kwiatkowska, M..  2016.  Advances and challenges of quantitative verification and synthesis for cyber-physical systems. 2016 Science of Security for Cyber-Physical Systems Workshop (SOSCYPS). :1–5.

We are witnessing a huge growth of cyber-physical systems, which are autonomous, mobile, endowed with sensing, controlled by software, and often wirelessly connected and Internet-enabled. They include factory automation systems, robotic assistants, self-driving cars, and wearable and implantable devices. Since they are increasingly often used in safety- or business-critical contexts, to mention invasive treatment or biometric authentication, there is an urgent need for modelling and verification technologies to support the design process, and hence improve the reliability and reduce production costs. This paper gives an overview of quantitative verification and synthesis techniques developed for cyber-physical systems, summarising recent achievements and future challenges in this important field.

Kumar, S. A. P., Bhargava, B., Macêdo, R., Mani, G..  2017.  Securing IoT-Based Cyber-Physical Human Systems against Collaborative Attacks. 2017 IEEE International Congress on Internet of Things (ICIOT). :9–16.

Security issues in the IoT based CPS are exacerbated with human participation in CPHS due to the vulnerabilities in both the technologies and the human involvement. A holistic framework to mitigate security threats in the IoT-based CPHS environment is presented to mitigate these issues. We have developed threat model involving human elements in the CPHS environment. Research questions, directions, and ideas with respect to securing IoT based CPHS against collaborative attacks are presented.

2017-12-20
Dutta, R. G., Guo, Xiaolong, Zhang, Teng, Kwiat, K., Kamhoua, C., Njilla, L., Jin, Y..  2017.  Estimation of safe sensor measurements of autonomous system under attack. 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC). :1–6.
The introduction of automation in cyber-physical systems (CPS) has raised major safety and security concerns. One attack vector is the sensing unit whose measurements can be manipulated by an adversary through attacks such as denial of service and delay injection. To secure an autonomous CPS from such attacks, we use a challenge response authentication (CRA) technique for detection of attack in active sensors data and estimate safe measurements using the recursive least square algorithm. For demonstrating effectiveness of our proposed approach, a car-follower model is considered where the follower vehicle's radar sensor measurements are manipulated in an attempt to cause a collision.
Schulz, A., Kotson, M., Meiners, C., Meunier, T., O’Gwynn, D., Trepagnier, P., Weller-Fahy, D..  2017.  Active Dependency Mapping: A Data-Driven Approach to Mapping Dependencies in Distributed Systems. 2017 IEEE International Conference on Information Reuse and Integration (IRI). :84–91.

We introduce Active Dependency Mapping (ADM), a method for establishing dependency relations among a set of interdependent services. The approach is to artificially degrade network performance to infer which assets on the network support a particular process. Artificial degradation of the network environment could be transparent to users; run continuously it could identify dependencies that are rare or occur only at certain timescales. A useful byproduct of this dependency analysis is a quantitative assessment of the resilience and robustness of the system. This technique is intriguing for hardening both enterprise networks and cyber physical systems. We present a proof-of-concept experiment executed on a real-world set of interrelated software services. We assess the efficacy of the approach, discuss current limitations, and suggest options for future development of ADM.

2017-12-12
Taylor, J. M., Sharif, H. R..  2017.  Security challenges and methods for protecting critical infrastructure cyber-physical systems. 2017 International Conference on Selected Topics in Mobile and Wireless Networking (MoWNeT). :1–6.

Cyber-Physical Systems (CPS) represent a fundamental link between information technology (IT) systems and the devices that control industrial production and maintain critical infrastructure services that support our modern world. Increasingly, the interconnections among CPS and IT systems have created exploitable security vulnerabilities due to a number of factors, including a legacy of weak information security applications on CPS and the tendency of CPS operators to prioritize operational availability at the expense of integrity and confidentiality. As a result, CPS are subject to a number of threats from cyber attackers and cyber-physical attackers, including denial of service and even attacks against the integrity of the data in the system. The effects of these attacks extend beyond mere loss of data or the inability to access information system services. Attacks against CPS can cause physical damage in the real world. This paper reviews the challenges of providing information assurance services for CPS that operate critical infrastructure systems and industrial control systems. These methods are thorough measures to close integrity and confidentiality gaps in CPS and processes to highlight the security risks that remain. This paper also outlines approaches to reduce the overhead and complexity for security methods, as well as examine novel approaches, including covert communications channels, to increase CPS security.

Abdi, Fardin, Tabish, Rohan, Rungger, Matthias, Zamani, Majid, Caccamo, Marco.  2017.  Application and System-level Software Fault Tolerance Through Full System Restarts. Proceedings of the 8th International Conference on Cyber-Physical Systems. :197–206.

Due to the growing performance requirements, embedded systems are increasingly more complex. Meanwhile, they are also expected to be reliable. Guaranteeing reliability on complex systems is very challenging. Consequently, there is a substantial need for designs that enable the use of unverified components such as real-time operating system (RTOS) without requiring their correctness to guarantee safety. In this work, we propose a novel approach to design a controller that enables the system to restart and remain safe during and after the restart. Complementing this controller with a switching logic allows the system to use complex, unverified controller to drive the system as long as it does not jeopardize safety. Such a design also tolerates faults that occur in the underlying software layers such as RTOS and middleware and recovers from them through system-level restarts that reinitialize the software (middleware, RTOS, and applications) from a read-only storage. Our approach is implementable using one commercial off-the-shelf (COTS) processing unit. To demonstrate the efficacy of our solution, we fully implement a controller for a 3 degree of freedom (3DOF) helicopter. We test the system by injecting various types of faults into the applications and RTOS and verify that the system remains safe.

2017-12-04
Athinaiou, M..  2017.  Cyber security risk management for health-based critical infrastructures. 2017 11th International Conference on Research Challenges in Information Science (RCIS). :402–407.

This brief paper reports on an early stage ongoing PhD project in the field of cyber-physical security in health care critical infrastructures. The research overall aims to develop a methodology that will increase the ability of secure recovery of health critical infrastructures. This ambitious or reckless attempt, as it is currently at an early stage, in this paper, tries to answer why cyber-physical security for health care infrastructures is important and of scientific interest. An initial PhD project methodology and expected outcomes are also discussed. The report concludes with challenges that emerge and possible future directions.

Lier, B. van.  2017.  The industrial internet of things and cyber security: An ecological and systemic perspective on security in digital industrial ecosystems. 2017 21st International Conference on System Theory, Control and Computing (ICSTCC). :641–647.

All over the world, objects are increasingly connected in networks such as the Industrial Internet of Things. Interconnections, intercommunications and interactions are driving the development of an entirely new whole in the form of the Industrial Internet of Things. Communication and interaction are the norm both for separate components, such as cyber-physical systems, and for the functioning of the system as a whole. This new whole can be likened to a natural ecosystem where the process of homeostasis ensures the stability and security of the whole. Components of such an industrial ecosystem, or even an industrial ecosystem as a whole, are increasingly targeted by cyber attacks. Such attacks not only threaten the functioning of one or multiple components, they also constitute a threat to the functioning of the new whole. General systems theory can offer a scientific framework for the development of measures to improve the security and stability of both separate components and the new whole.

2017-11-27
Ashok, A., Krishnaswamy, S., Govindarasu, M..  2016.  PowerCyber: A remotely accessible testbed for Cyber Physical security of the Smart Grid. 2016 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.

Cyber Physical Systems (CPS) security testbeds serve as a platform for evaluating and validating novel CPS security tools and technologies, accelerating the transition of state-of-the-art research to industrial practice. The engineering of CPS security testbeds requires significant investments in money, time and modeling efforts to provide a scalable, high-fidelity, real-time attack-defense platform. Therefore, there is a strong need in academia and industry to create remotely accessible testbeds that support a range of use-cases pertaining to CPS security of the grid, including vulnerability assessments, impact analysis, product testing, attack-defense exercises, and operator training. This paper describes the implementation architecture, and capabilities of a remote access and experimental orchestration framework developed for the PowerCyber CPS security testbed at Iowa State University (ISU). The paper then describes several engineering challenges in the development of such remotely accessible testbeds for Smart Grid CPS security experimentation. Finally, the paper provides a brief case study with some screenshots showing a particular use case scenario on the remote access framework.

Pan, K., Teixeira, A. M. H., Cvetkovic, M., Palensky, P..  2016.  Combined data integrity and availability attacks on state estimation in cyber-physical power grids. 2016 IEEE International Conference on Smart Grid Communications (SmartGridComm). :271–277.

This paper introduces combined data integrity and availability attacks to expand the attack scenarios against power system state estimation. The goal of the adversary, who uses the combined attack, is to perturb the state estimates while remaining hidden from the observer. We propose security metrics that quantify vulnerability of power grids to combined data attacks under single and multi-path routing communication models. In order to evaluate the proposed security metrics, we formulate them as mixed integer linear programming (MILP) problems. The relation between the security metrics of combined data attacks and pure data integrity attacks is analyzed, based on which we show that, when data availability and data integrity attacks have the same cost, the two metrics coincide. When data availability attacks have a lower cost than data integrity attacks, we show that a combined data attack could be executed with less attack resources compared to pure data integrity attacks. Furthermore, it is shown that combined data attacks would bypass integrity-focused mitigation schemes. These conclusions are supported by the results obtained on a power system model with and without a communication model with single or multi-path routing.

2017-11-13
Venugopalan, V., Patterson, C. D., Shila, D. M..  2016.  Detecting and thwarting hardware trojan attacks in cyber-physical systems. 2016 IEEE Conference on Communications and Network Security (CNS). :421–425.

Cyber-physical system integrity requires both hardware and software security. Many of the cyber attacks are successful as they are designed to selectively target a specific hardware or software component in an embedded system and trigger its failure. Existing security measures also use attack vector models and isolate the malicious component as a counter-measure. Isolated security primitives do not provide the overall trust required in an embedded system. Trust enhancements are proposed to a hardware security platform, where the trust specifications are implemented in both software and hardware. This distribution of trust makes it difficult for a hardware-only or software-only attack to cripple the system. The proposed approach is applied to a smart grid application consisting of third-party soft IP cores, where an attack on this module can result in a blackout. System integrity is preserved in the event of an attack and the anomalous behavior of the IP core is recorded by a supervisory module. The IP core also provides a snapshot of its trust metric, which is logged for further diagnostics.

2017-10-18
Ollesch, Julius.  2016.  Adaptive Steering of Cyber-physical Systems with Atomic Complex Event Processing Services: Doctoral Symposium. Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems. :402–405.
Given the advent of cyber-physical systems (CPS), event-based control paradigms such as complex event processing (CEP) are vital enablers for adaptive analytical control mechanisms. CPS are becoming a high-profile research topic as they are key to disruptive digital innovations such as autonomous driving, industrial internet, smart grid and ambient assisted living. However, organizational and technological scalability of today's CEP approaches is limited by their monolithic architectures. This leads to the research idea for atomic CEP entities and the hypothesis that a network of small event-based control services is better suited for CPS development and operation than current centralised approaches. In addition, the paper summarizes preliminary results of the presented doctoral work and outlines questions for future research as well as an evaluation plan.
2017-09-05
Antonioli, Daniele, Agrawal, Anand, Tippenhauer, Nils Ole.  2016.  Towards High-Interaction Virtual ICS Honeypots-in-a-Box. Proceedings of the 2Nd ACM Workshop on Cyber-Physical Systems Security and Privacy. :13–22.

In this work, we address the problem of designing and implementing honeypots for Industrial Control Systems (ICS). Honeypots are vulnerable systems that are set up with the intent to be probed and compromised by attackers. Analysis of those attacks then allows the defender to learn about novel attacks and general strategy of the attacker. Honeypots for ICS systems need to satisfy both traditional ICT requirements, such as cost and maintainability, and more specific ICS requirements, such as time and determinism. We propose the design of a virtual, high-interaction and server-based ICS honeypot to satisfy the requirements, and the deployment of a realistic, cost-effective, and maintainable ICS honeypot. An attacker model is introduced to complete the problem statement and requirements. Based on our design and the MiniCPS framework, we implemented a honeypot mimicking a water treatment testbed. To the best of our knowledge, the presented honeypot implementation is the first academic work targeting Ethernet/IP based ICS honeypots, the first ICS virtual honeypot that is high-interactive without the use of full virtualization technologies (such as a network of virtual machines), and the first ICS honeypot that can be managed with a Software-Defined Network (SDN) controller.

2017-09-01
Carmen Cheh, University of Illinois at Urbana-Champaign, Binbin Chen, Advanced Digital Sciences Center, Singapore, William G. Temple, A, Advanced Digital Sciences Center, Singapore, William H. Sanders, University of Illinois at Urbana-Champaign.  2017.  Data-Driven Model-Based Detection of Malicious Insiders via Physical Access Logs. 14th International Conference on Quantitative Evaluation of Systems (QEST 2017).

The risk posed by insider threats has usually been approached by analyzing the behavior of users solely in the cyber domain. In this paper, we show the viability of using physical movement logs, collected via a building access control system, together with an understanding of the layout of the building housing the system’s assets, to detect malicious insider behavior that manifests itself in the physical domain. In particular, we propose a systematic framework that uses contextual knowledge about the system and its users, learned from historical data gathered from a building access control system, to select suitable models for representing movement behavior. We then explore the online usage of the learned models, together with knowledge about the layout of the building being monitored, to detect malicious insider behavior. Finally, we show the effectiveness of the developed framework using real-life data traces of user movement in railway transit stations.