Visible to the public Biblio

Found 609 results

Filters: Keyword is Cyber-physical systems  [Clear All Filters]
2018-07-13
Yangfend Qu, Illinois Institute of Technology, Xin Liu, Illinois Institute of Technology, Dong Jin, Illinois Institute of Technology, Yuan Hong, Illinois Institute of Technology, Chen Chen, Argonne National Laboratory.  2018.  Enabling a Resilient and Self-healing PMU Infrastructure Using Centralized Network Control. 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization.

Many of the emerging wide-area monitoring protection and control (WAMPAC) applications in modern electrical grids rely heavily on the availability and integrity of widespread phasor measurement unit (PMU) data. Therefore, it is critical to protect PMU networks against growing cyber-attacks and system faults. In this paper, we present a self-healing PMU network design that considers both power system observability and communication network characteristics. Our design utilizes centralized network control, such as the emerging software-defined networking (SDN) technology, to design resilient network self-healing algorithms against cyber-attacks. Upon detection of a cyber-attack, the PMU network can reconfigure itself to isolate compromised devices and re-route measurement
data with the goal of preserving the power system observability. We have developed a proof-of-concept system in a container-based network testbed using integer linear programming to solve a graphbased PMU system model.We also evaluate the system performance regarding the self-healing plan generation and installation using the IEEE 30-bus system.
 

2018-06-07
Kang, E. Y., Mu, D., Huang, L., Lan, Q..  2017.  Verification and Validation of a Cyber-Physical System in the Automotive Domain. 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :326–333.
Software development for Cyber-Physical Systems (CPS), e.g., autonomous vehicles, requires both functional and non-functional quality assurance to guarantee that the CPS operates safely and effectively. EAST-ADL is a domain specific architectural language dedicated to safety-critical automotive embedded system design. We have previously modified EAST-ADL to include energy constraints and transformed energy-aware real-time (ERT) behaviors modeled in EAST-ADL/Stateflow into UPPAAL models amenable to formal verification. Previous work is extended in this paper by including support for Simulink and an integration of Simulink/Stateflow (S/S) within the same too lchain. S/S models are transformed, based on the extended ERT constraints with probability parameters, into verifiable UPPAAL-SMC models and integrate the translation with formal statistical analysis techniques: Probabilistic extension of EAST-ADL constraints is defined as a semantics denotation. A set of mapping rules is proposed to facilitate the guarantee of translation. Formal analysis on both functional- and non-functional properties is performed using Simulink Design Verifier and UPPAAL-SMC. Our approach is demonstrated on the autonomous traffic sign recognition vehicle case study.
Ahmadon, M. A. B., Yamaguchi, S., Saon, S., Mahamad, A. K..  2017.  On service security analysis for event log of IoT system based on data Petri net. 2017 IEEE International Symposium on Consumer Electronics (ISCE). :4–8.

The Internet of Things (IoT) has bridged our physical world to the cyber world which allows us to achieve our desired lifestyle. However, service security is an essential part to ensure that the designed service is not compromised. In this paper, we proposed a security analysis for IoT services. We focus on the context of detecting malicious operation from an event log of the designed IoT services. We utilized Petri nets with data to model IoT service which is logically correct. Then, we check the trace from an event log by tracking the captured process and data. Finally, we illustrated the approach with a smart home service and showed the effectiveness of our approach.

Tundis, Andrea, Egert, Rolf, Mühlhäuser, Max.  2017.  Attack Scenario Modeling for Smart Grids Assessment Through Simulation. Proceedings of the 12th International Conference on Availability, Reliability and Security. :13:1–13:10.
Smart Grids (SGs) are Critical Infrastructures (CI), which are responsible for controlling and maintaining the distribution of electricity. To manage this task, modern SGs integrate an Information and Communication Infrastructure (ICT) beside the electrical power grid. Aside from the benefits derived from the increasing control and management capabilities offered by the ICT, unfortunately the introduction of this cyber layer provides an attractive attack surface for hackers. As a consequence, security becomes a fundamental prerequisite to be fulfilled. In this context, the adoption of Systems Engineering (SE) tools combined with Modeling and Simulation (M&S) techniques represent a promising solution to support the evaluation process of a SG during early design stages. In particular, the paper investigates on the identification, modeling and assessment of attacks in SG environments, by proposing a model for representing attack scenarios as a combination of attack types, attack schema and their temporal occurrence. Simulation techniques are exploited to enable the execution of such attack combinations in the SG domain. Specifically, a simulator, which allows to assess the SG behaviour to identify possible flaws and provide preventive actions before its realization, is developed on the basis of the proposed model and exemplified through a case study.
2018-05-24
Ding, P., Wang, Y., Yan, G., Li, W..  2017.  DoS Attacks in Electrical Cyber-Physical Systems: A Case Study Using TrueTime Simulation Tool. 2017 Chinese Automation Congress (CAC). :6392–6396.

Recent years, the issue of cyber security has become ever more prevalent in the analysis and design of electrical cyber-physical systems (ECPSs). In this paper, we present the TrueTime Network Library for modeling the framework of ECPSs and focuses on the vulnerability analysis of ECPSs under DoS attacks. Model predictive control algorithm is used to control the ECPS under disturbance or attacks. The performance of decentralized and distributed control strategies are compared on the simulation platform. It has been proved that DoS attacks happen at dada collecting sensors or control instructions actuators will influence the system differently.

Huang, P., Wang, Y., Yan, G..  2017.  Vulnerability Analysis of Electrical Cyber Physical Systems Using a Simulation Platform. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. :489–494.

This paper considers a framework of electrical cyber-physical systems (ECPSs) in which each bus and branch in a power grid is equipped with a controller and a sensor. By means of measuring the damages of cyber attacks in terms of cutting off transmission lines, three solution approaches are proposed to assess and deal with the damages caused by faults or cyber attacks. Splitting incident is treated as a special situation in cascading failure propagation. A new simulation platform is built for simulating the protection procedure of ECPSs under faults. The vulnerability of ECPSs under faults is analyzed by experimental results based on IEEE 39-bus system.

2018-05-09
Wang, Huandong, Gao, Chen, Li, Yong, Zhang, Zhi-Li, Jin, Depeng.  2017.  From Fingerprint to Footprint: Revealing Physical World Privacy Leakage by Cyberspace Cookie Logs. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. :1209–1218.

It is well-known that online services resort to various cookies to track users through users' online service identifiers (IDs) - in other words, when users access online services, various "fingerprints" are left behind in the cyberspace. As they roam around in the physical world while accessing online services via mobile devices, users also leave a series of "footprints" – i.e., hints about their physical locations - in the physical world. This poses a potent new threat to user privacy: one can potentially correlate the "fingerprints" left by the users in the cyberspace with "footprints" left in the physical world to infer and reveal leakage of user physical world privacy, such as frequent user locations or mobility trajectories in the physical world - we refer to this problem as user physical world privacy leakage via user cyberspace privacy leakage. In this paper we address the following fundamental question: what kind - and how much - of user physical world privacy might be leaked if we could get hold of such diverse network datasets even without any physical location information. In order to conduct an in-depth investigation of these questions, we utilize the network data collected via a DPI system at the routers within one of the largest Internet operator in Shanghai, China over a duration of one month. We decompose the fundamental question into the three problems: i) linkage of various online user IDs belonging to the same person via mobility pattern mining; ii) physical location classification via aggregate user mobility patterns over time; and iii) tracking user physical mobility. By developing novel and effective methods for solving each of these problems, we demonstrate that the question of user physical world privacy leakage via user cyberspace privacy leakage is not hypothetical, but indeed poses a real potent threat to user privacy.

Fellmuth, J., Herber, P., Pfeffer, T. F., Glesner, S..  2017.  Securing Real-Time Cyber-Physical Systems Using WCET-Aware Artificial Diversity. 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :454–461.

Artificial software diversity is an effective way to prevent software vulnerabilities and errors to be exploited in code-reuse attacks. This is achieved by lowering the individual probability of a successful attack to a level that makes the attack unfeasible. Unfortunately, the existing approaches are not applicable to safety-critical real-time systems as they induce unacceptable performance overheads, they violate safety and timing guarantees, or they assume hardware resources which are typically not available in embedded systems. To overcome these problems, we propose a safe diversity approach that preserves the timing properties of real-time processes by controlling its impact on the worst case execution time (WCET). Our main idea is to use block-level diversity with a large, but fixed set of movable instruction sequences, and to use static WCET analysis to identify non-critical areas of code where it can safely be split into more movable instruction sequences.

2018-04-02
Hill, Z., Nichols, W. M., Papa, M., Hale, J. C., Hawrylak, P. J..  2017.  Verifying Attack Graphs through Simulation. 2017 Resilience Week (RWS). :64–67.

Verifying attacks against cyber physical systems can be a costly and time-consuming process. By using a simulated environment, attacks can be verified quickly and accurately. By combining the simulation of a cyber physical system with a hybrid attack graph, the effects of a series of exploits can be accurately analysed. Furthermore, the use of a simulated environment to verify attacks may uncover new information about the nature of the attacks.

Hayawi, K., Ho, P. H., Mathew, S. S., Peng, L..  2017.  Securing the Internet of Things: A Worst-Case Analysis of Trade-Off between Query-Anonymity and Communication-Cost. 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA). :939–946.

Cloud services are widely used to virtualize the management and actuation of the real-world the Internet of Things (IoT). Due to the increasing privacy concerns regarding querying untrusted cloud servers, query anonymity has become a critical issue to all the stakeholders which are related to assessment of the dependability and security of the IoT system. The paper presents our study on the problem of query receiver-anonymity in the cloud-based IoT system, where the trade-off between the offered query-anonymity and the incurred communication is considered. The paper will investigate whether the accepted worst-case communication cost is sufficient to achieve a specific query anonymity or not. By way of extensive theoretical analysis, it shows that the bounds of worst-case communication cost is quadratically increased as the offered level of anonymity is increased, and they are quadratic in the network diameter for the opposite range. Extensive simulation is conducted to verify the analytical assertions.

2018-03-26
Thompson, Brian, Harang, Richard.  2017.  Identifying Key Cyber-Physical Terrain. Proceedings of the 3rd ACM on International Workshop on Security And Privacy Analytics. :23–28.

The high mobility of Army tactical networks, combined with their close proximity to hostile actors, elevates the risks associated with short-range network attacks. The connectivity model for such short range connections under active operations is extremely fluid, and highly dependent upon the physical space within which the element is operating, as well as the patterns of movement within that space. To handle these dependencies, we introduce the notion of "key cyber-physical terrain": locations within an area of operations that allow for effective control over the spread of proximity-dependent malware in a mobile tactical network, even as the elements of that network are in constant motion with an unpredictable pattern of node-to-node connectivity. We provide an analysis of movement models and approximation strategies for finding such critical nodes, and demonstrate via simulation that we can identify such key cyber-physical terrain quickly and effectively.

2018-03-19
Ge, H., Yue, D., p Xie, X., Deng, S., Zhang, Y..  2017.  Analysis of Cyber Physical Systems Security via Networked Attacks. 2017 36th Chinese Control Conference (CCC). :4266–4272.

In this paper, cyber physical system is analyzed from security perspective. A double closed-loop security control structure and algorithm with defense functions is proposed. From this structure, the features of several cyber attacks are considered respectively. By this structure, the models of information disclosure, denial-of-service (DoS) and Man-in-the-Middle Attack (MITM) are proposed. According to each kind attack, different models are obtained and analyzed, then reduce to the unified models. Based on this, system security conditions are obtained, and a defense scenario with detail algorithm is design to illustrate the implementation of this program.

Back, J., Kim, J., Lee, C., Park, G., Shim, H..  2017.  Enhancement of Security against Zero Dynamics Attack via Generalized Hold. 2017 IEEE 56th Annual Conference on Decision and Control (CDC). :1350–1355.

Zero dynamics attack is lethal to cyber-physical systems in the sense that it is stealthy and there is no way to detect it. Fortunately, if the given continuous-time physical system is of minimum phase, the effect of the attack is negligible even if it is not detected. However, the situation becomes unfavorable again if one uses digital control by sampling the sensor measurement and using the zero-order-hold for actuation because of the `sampling zeros.' When the continuous-time system has relative degree greater than two and the sampling period is small, the sampled-data system must have unstable zeros (even if the continuous-time system is of minimum phase), so that the cyber-physical system becomes vulnerable to `sampling zero dynamics attack.' In this paper, we begin with its demonstration by a few examples. Then, we present an idea to protect the system by allocating those discrete-time zeros into stable ones. This idea is realized by employing the so-called `generalized hold' which replaces the zero-order-hold.

Jin, X., Haddad, W. M., Hayakawa, T..  2017.  An Adaptive Control Architecture for Cyber-Physical System Security in the Face of Sensor and Actuator Attacks and Exogenous Stochastic Disturbances. 2017 IEEE 56th Annual Conference on Decision and Control (CDC). :1380–1385.

In this paper, we propose a novel adaptive control architecture for addressing security and safety in cyber-physical systems subject to exogenous disturbances. Specifically, we develop an adaptive controller for time-invariant, state-dependent adversarial sensor and actuator attacks in the face of stochastic exogenous disturbances. We show that the proposed controller guarantees uniform ultimate boundedness of the closed-loop dynamical system in a mean-square sense. We further discuss the practicality of the proposed approach and provide a numerical example involving the lateral directional dynamics of an aircraft to illustrate the efficacy of the proposed adaptive control architecture.

2018-03-05
Shelar, D., Sun, P., Amin, S., Zonouz, S..  2017.  Compromising Security of Economic Dispatch in Power System Operations. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :531–542.

Power grid operations rely on the trustworthy operation of critical control center functionalities, including the so-called Economic Dispatch (ED) problem. The ED problem is a large-scale optimization problem that is periodically solved by the system operator to ensure the balance of supply and load while maintaining reliability constraints. In this paper, we propose a semantics-based attack generation and implementation approach to study the security of the ED problem.1 Firstly, we generate optimal attack vectors to transmission line ratings to induce maximum congestion in the critical lines, resulting in the violation of capacity limits. We formulate a bilevel optimization problem in which the attacker chooses manipulations of line capacity ratings to maximinimize the percentage line capacity violations under linear power flows. We reformulate the bilevel problem as a mixed integer linear program that can be solved efficiently. Secondly, we describe how the optimal attack vectors can be implemented in commercial energy management systems (EMSs). The attack explores the dynamic memory space of the EMS, and replaces the true line capacity ratings stored in data regions with the optimal attack vectors. In contrast to the well-known false data injection attacks to control systems that require compromising distributed sensors, our approach directly implements attacks to the control center server. Our experimental results on benchmark power systems and five widely utilized EMSs show the practical feasibility of our attack generation and implementation approach.

Shelar, D., Sun, P., Amin, S., Zonouz, S..  2017.  Compromising Security of Economic Dispatch in Power System Operations. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :531–542.

Power grid operations rely on the trustworthy operation of critical control center functionalities, including the so-called Economic Dispatch (ED) problem. The ED problem is a large-scale optimization problem that is periodically solved by the system operator to ensure the balance of supply and load while maintaining reliability constraints. In this paper, we propose a semantics-based attack generation and implementation approach to study the security of the ED problem.1 Firstly, we generate optimal attack vectors to transmission line ratings to induce maximum congestion in the critical lines, resulting in the violation of capacity limits. We formulate a bilevel optimization problem in which the attacker chooses manipulations of line capacity ratings to maximinimize the percentage line capacity violations under linear power flows. We reformulate the bilevel problem as a mixed integer linear program that can be solved efficiently. Secondly, we describe how the optimal attack vectors can be implemented in commercial energy management systems (EMSs). The attack explores the dynamic memory space of the EMS, and replaces the true line capacity ratings stored in data regions with the optimal attack vectors. In contrast to the well-known false data injection attacks to control systems that require compromising distributed sensors, our approach directly implements attacks to the control center server. Our experimental results on benchmark power systems and five widely utilized EMSs show the practical feasibility of our attack generation and implementation approach.

Shelar, D., Sun, P., Amin, S., Zonouz, S..  2017.  Compromising Security of Economic Dispatch in Power System Operations. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :531–542.
Power grid operations rely on the trustworthy operation of critical control center functionalities, including the so-called Economic Dispatch (ED) problem. The ED problem is a large-scale optimization problem that is periodically solved by the system operator to ensure the balance of supply and load while maintaining reliability constraints. In this paper, we propose a semantics-based attack generation and implementation approach to study the security of the ED problem.1 Firstly, we generate optimal attack vectors to transmission line ratings to induce maximum congestion in the critical lines, resulting in the violation of capacity limits. We formulate a bilevel optimization problem in which the attacker chooses manipulations of line capacity ratings to maximinimize the percentage line capacity violations under linear power flows. We reformulate the bilevel problem as a mixed integer linear program that can be solved efficiently. Secondly, we describe how the optimal attack vectors can be implemented in commercial energy management systems (EMSs). The attack explores the dynamic memory space of the EMS, and replaces the true line capacity ratings stored in data regions with the optimal attack vectors. In contrast to the well-known false data injection attacks to control systems that require compromising distributed sensors, our approach directly implements attacks to the control center server. Our experimental results on benchmark power systems and five widely utilized EMSs show the practical feasibility of our attack generation and implementation approach.
2018-02-27
Elattar, M., Cao, T., Wendt, V., Jaspemeite, J., Trächtler, A..  2017.  Reliable Multipath Communication Approach for Internet-Based Cyber-Physical Systems. 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE). :1226–1233.

The vision of cyber-physical systems (CPSs) considered the Internet as the future communication network for such systems. A challenge with this regard is to provide high communication reliability, especially, for CPSs applications in critical infrastructures. Examples include smart grid applications with reliability requirements between 99-99.9999% [2]. Even though the Internet is a cost effective solution for such applications, the reliability of its end-to-end (e2e) paths is inadequate (often less than 99%). In this paper, we propose Reliable Multipath Communication Approach for Internet-based CPSs (RC4CPS). RC4CPS is an e2e approach that utilizes the inherent redundancy of the Internet and multipath (MP) transport protocols concept to improve reliability measured in terms of availability. It provides online monitoring and MP selection in order to fulfill the application specific reliability requirement. In addition, our MP selection considers e2e paths dependency and unavailability prediction to maximize the reliability gains of MP communication. Our results show that RC4CPS dynamic MP selection satisfied the reliability requirement along with selecting e2e paths with low dependency and unavailability probability.

He, F., Rao, N. S. V., Ma, C. Y. T..  2017.  Game-Theoretic Analysis of System of Systems with Inherent Robustness Parameters. 2017 20th International Conference on Information Fusion (Fusion). :1–9.

Large-scale infrastructures are critical to economic and social development, and hence their continued performance and security are of high national importance. Such an infrastructure often is a system of systems, and its functionality critically depends on the inherent robustness of its constituent systems and its defense strategy for countering attacks. Additionally, interdependencies between the systems play another critical role in determining the infrastructure robustness specified by its survival probability. In this paper, we develop game-theoretic models between a defender and an attacker for a generic system of systems using inherent parameters and conditional survival probabilities that characterize the interdependencies. We derive Nash Equilibrium conditions for the cases of interdependent and independent systems of systems under sum-form utility functions. We derive expressions for the infrastructure survival probability that capture its dependence on cost and system parameters, and also on dependencies that are specified by conditional probabilities. We apply the results to cyber-physical systems which show the effects on system survival probability due to defense and attack intensities, inherent robustness, unit cost, target valuation, and interdependencies.

Ayar, M., Trevizan, R. D., Bretas, A. S., Latchman, H., Obuz, S..  2017.  A Robust Decentralized Control Framework for Enhancing Smart Grid Transient Stability. 2017 IEEE Power Energy Society General Meeting. :1–5.

In this paper, we present a decentralized nonlinear robust controller to enhance the transient stability margin of synchronous generators. Although, the trend in power system control is shifting towards centralized or distributed controller approaches, the remote data dependency of these schemes fuels cyber-physical security issues. Since the excessive delay or losing remote data affect severely the operation of those controllers, the designed controller emerges as an alternative for stabilization of Smart Grids in case of unavailability of remote data and in the presence of plant parametric uncertainties. The proposed controller actuates distributed storage systems such as flywheels in order to reduce stabilization time and it implements a novel input time delay compensation technique. Lyapunov stability analysis proves that all the tracking error signals are globally uniformly ultimately bounded. Furthermore, the simulation results demonstrate that the proposed controller outperforms traditional local power systems controllers such as Power System Stabilizers.

2018-02-21
Marksteiner, S., Vallant, H..  2017.  Towards a secure smart grid storage communications gateway. 2017 Smart City Symposium Prague (SCSP). :1–6.

This research in progress paper describes the role of cyber security measures undertaken in an ICT system for integrating electric storage technologies into the grid. To do so, it defines security requirements for a communications gateway and gives detailed information and hands-on configuration advice on node and communication line security, data storage, coping with backend M2M communications protocols and examines privacy issues. The presented research paves the road for developing secure smart energy communications devices that allow enhancing energy efficiency. The described measures are implemented in an actual gateway device within the HORIZON 2020 project STORY, which aims at developing new ways to use storage and demonstrating these on six different demonstration sites.

Lai, J., Duan, B., Su, Y., Li, L., Yin, Q..  2017.  An active security defense strategy for wind farm based on automated decision. 2017 IEEE Power Energy Society General Meeting. :1–5.

With the development of smart grid, information and energy integrate deeply. For remote monitoring and cluster management, SCADA system of wind farm should be connected to Internet. However, communication security and operation risk put forward a challenge to data network of the wind farm. To address this problem, an active security defense strategy combined whitelist and security situation assessment is proposed. Firstly, the whitelist is designed by analyzing the legitimate packet of Modbus on communication of SCADA servers and PLCs. Then Knowledge Automation is applied to establish the Decision Requirements Diagram (DRD) for wind farm security. The D-S evidence theory is adopted to assess operation situation of wind farm and it together with whitelist offer the security decision for wind turbine. This strategy helps to eliminate the wind farm owners' security concerns of data networking, and improves the integrity of the cyber security defense for wind farm.

Zhang, Yuexin, Xiang, Yang, Huang, Xinyi.  2017.  A Cross-Layer Key Establishment Model for Wireless Devices in Cyber-Physical Systems. Proceedings of the 3rd ACM Workshop on Cyber-Physical System Security. :43–53.

Wireless communications in Cyber-Physical Systems (CPS) are vulnerable to many adversarial attacks such as eavesdropping. To secure the communications, secret session keys need to be established between wireless devices. In existing symmetric key establishment protocols, it is assumed that devices are pre-loaded with secrets. In the CPS, however, wireless devices are produced by different companies. It is not practical to assume that the devices are pre-loaded with certain secrets when they leave companies. As a consequence, existing symmetric key establishment protocols cannot be directly implemented in the CPS. Motivated by these observations, this paper presents a cross-layer key establishment model for heterogeneous wireless devices in the CPS. Specifically, by implementing our model, wireless devices extract master keys (shared with the system authority) at the physical layer using ambient wireless signals. Then, the system authority distributes secrets for devices (according to an existing symmetric key establishment protocol) by making use of the extracted master keys. Completing these operations, wireless devices can establish secret session keys at higher layers by calling the employed key establishment protocol. Additionally, we prove the security of the proposed model. We analyse the performance of the new model by implementing it and converting existing symmetric key establishment protocols into cross-layer key establishment protocols.

2018-02-14
Backes, M., Keefe, K., Valdes, A..  2017.  A microgrid ontology for the analysis of cyber-physical security. 2017 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1–6.
The IEC 61850 protocol suite for electrical sub-station automation enables substation configuration and design for protection, communication, and control. These power system applications can be formally verified through use of object models, common data classes, and message classes. The IEC 61850-7-420 DER (Distributed Energy Resource) extension further defines object classes for assets such as types of DER (e.g., energy storage, photovoltaic), DER unit controllers, and other DER-associated devices (e.g., inverter). These object classes describe asset-specific attributes such as state of charge, capacity limits, and ramp rate. Attributes can be fixed (rated capacity of the device) dynamic (state of charge), or binary (on or off, dispatched or off-line, operational or fault state). We sketch out a proposed ontology based on the 61850 and 61850-7-420 DER object classes to model threats against a micro-grid, which is an electrical system consisting of controllable loads and distributed generation that can function autonomously (in island mode) or connected to a larger utility grid. We consider threats against the measurements on which the control loop is based, as well as attacks against the control directives and the communication infrastructure. We use this ontology to build a threat model using the ADversary View Security Evaluation (ADVISE) framework, which enables identification of attack paths based on adversary objectives (for example, destabilize the entire micro-grid by reconnecting to the utility without synchronization) and helps identify defender strategies. Furthermore, the ADVISE method provides quantitative security metrics that can help inform trade-off decisions made by system architects and controls.
2018-02-06
Settanni, G., Shovgenya, Y., Skopik, F., Graf, R., Wurzenberger, M., Fiedler, R..  2017.  Acquiring Cyber Threat Intelligence through Security Information Correlation. 2017 3rd IEEE International Conference on Cybernetics (CYBCONF). :1–7.

Cyber Physical Systems (CPS) operating in modern critical infrastructures (CIs) are increasingly being targeted by highly sophisticated cyber attacks. Threat actors have quickly learned of the value and potential impact of targeting CPS, and numerous tailored multi-stage cyber-physical attack campaigns, such as Advanced Persistent Threats (APTs), have been perpetrated in the last years. They aim at stealthily compromising systems' operations and cause severe impact on daily business operations such as shutdowns, equipment damage, reputation damage, financial loss, intellectual property theft, and health and safety risks. Protecting CIs against such threats has become as crucial as complicated. Novel distributed detection and reaction methodologies are necessary to effectively uncover these attacks, and timely mitigate their effects. Correlating large amounts of data, collected from a multitude of relevant sources, is fundamental for Security Operation Centers (SOCs) to establish cyber situational awareness, and allow to promptly adopt suitable countermeasures in case of attacks. In our previous work we introduced three methods for security information correlation. In this paper we define metrics and benchmarks to evaluate these correlation methods, we assess their accuracy, and we compare their performance. We finally demonstrate how the presented techniques, implemented within our cyber threat intelligence analysis engine called CAESAIR, can be applied to support incident handling tasks performed by SOCs.