Visible to the public Biblio

Found 609 results

Filters: Keyword is Cyber-physical systems  [Clear All Filters]
2021-09-07
Lenard, Teri, Bolboacă, Roland, Genge, Bela.  2020.  LOKI: A Lightweight Cryptographic Key Distribution Protocol for Controller Area Networks. 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP). :513–519.
The recent advancement in the automotive sector has led to a technological explosion. As a result, the modern car provides a wide range of features supported by state of the art hardware and software. Unfortunately, while this is the case of most major components, in the same vehicle we find dozens of sensors and sub-systems built over legacy hardware and software with limited computational capabilities. This paper presents LOKI, a lightweight cryptographic key distribution scheme applicable in the case of the classical invehicle communication systems. The LOKI protocol stands out compared to already proposed protocols in the literature due to its ability to use only a single broadcast message to initiate the generation of a new cryptographic key across a group of nodes. It's lightweight key derivation algorithm takes advantage of a reverse hash chain traversal algorithm to generate fresh session keys. Experimental results consisting of a laboratory-scale system based on Vector Informatik's CANoe simulation environment demonstrate the effectiveness of the developed methodology and its seamless impact manifested on the network.
Young, Clinton, Svoboda, Jordan, Zambreno, Joseph.  2020.  Towards Reverse Engineering Controller Area Network Messages Using Machine Learning. 2020 IEEE 6th World Forum on Internet of Things (WF-IoT). :1–6.
The automotive Controller Area Network (CAN) allows Electronic Control Units (ECUs) to communicate with each other and control various vehicular functions such as engine and braking control. Consequently CAN and ECUs are high priority targets for hackers. As CAN implementation details are held as proprietary information by vehicle manufacturers, it can be challenging to decode and correlate CAN messages to specific vehicle operations. To understand the precise meanings of CAN messages, reverse engineering techniques that are time-consuming, manually intensive, and require a physical vehicle are typically used. This work aims to address the process of reverse engineering CAN messages for their functionality by creating a machine learning classifier that analyzes messages and determines their relationship to other messages and vehicular functions. Our work examines CAN traffic of different vehicles and standards to show that it can be applied to a wide arrangement of vehicles. The results show that the function of CAN messages can be determined without the need to manually reverse engineer a physical vehicle.
Sami, Muhammad, Ibarra, Matthew, Esparza, Anamaria C., Al-Jufout, Saleh, Aliasgari, Mehrdad, Mozumdar, Mohammad.  2020.  Rapid, Multi-vehicle and Feed-forward Neural Network based Intrusion Detection System for Controller Area Network Bus. 2020 IEEE Green Energy and Smart Systems Conference (IGESSC). :1–6.
In this paper, an Intrusion Detection System (IDS) in the Controller Area Network (CAN) bus of modern vehicles has been proposed. NESLIDS is an anomaly detection algorithm based on the supervised Deep Neural Network (DNN) architecture that is designed to counter three critical attack categories: Denial-of-service (DoS), fuzzy, and impersonation attacks. Our research scope included modifying DNN parameters, e.g. number of hidden layer neurons, batch size, and activation functions according to how well it maximized detection accuracy and minimized the false positive rate (FPR) for these attacks. Our methodology consisted of collecting CAN Bus data from online and in real-time, injecting attack data after data collection, preprocessing in Python, training the DNN, and testing the model with different datasets. Results show that the proposed IDS effectively detects all attack types for both types of datasets. NESLIDS outperforms existing approaches in terms of accuracy, scalability, and low false alarm rates.
Kalkan, Soner Can, Sahingoz, Ozgur Koray.  2020.  In-Vehicle Intrusion Detection System on Controller Area Network with Machine Learning Models. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.
Parallel with the developing world, transportation technologies have started to expand and change significantly year by year. This change brings with it some inevitable problems. Increasing human population and growing transportation-needs result many accidents in urban and rural areas, and this recursively results extra traffic problems and fuel consumption. It is obvious that the issues brought by this spiral loop needed to be solved with the use of some new technological achievements. In this context, self-driving cars or automated vehicles concepts are seen as a good solution. However, this also brings some additional problems with it. Currently many cars are provided with some digital security systems, which are examined in two phases, internal and external. These systems are constructed in the car by using some type of embedded system (such as the Controller Area Network (CAN)) which are needed to be protected form outsider cyberattacks. These attack can be detected by several ways such as rule based system, anomaly based systems, list based systems, etc. The current literature showed that researchers focused on the use of some artificial intelligence techniques for the detection of this type of attack. In this study, an intrusion detection system based on machine learning is proposed for the CAN security, which is the in-vehicle communication structure. As a result of the study, it has been observed that the decision tree-based ensemble learning models results the best performance in the tested models. Additionally, all models have a very good accuracy levels.
Lenard, Teri, Bolboacă, Roland, Genge, Bela, Haller, Piroska.  2020.  MixCAN: Mixed and Backward-Compatible Data Authentication Scheme for Controller Area Networks. 2020 IFIP Networking Conference (Networking). :395–403.
The massive proliferation of state of the art interfaces into the automotive sector has triggered a revolution in terms of the technological ecosystem that is found in today's modern car. Accordingly, on the one hand, we find dozens of Electronic Control Units (ECUs) running several hundred MB of code, and more and more sophisticated dashboards with integrated wireless communications. On the other hand, in the same vehicle we find the underlying communication infrastructure struggling to keep up with the pace of these radical changes. This paper presents MixCAN (MIXed data authentication for Control Area Networks), an approach for mixing different message signatures (i.e., authentication tags) in order to reduce the overhead of Controller Area Network (CAN) communications. MixCAN leverages the attributes of Bloom Filters in order to ensure that an ECU can sign messages with different CAN identifiers (i.e., mix different message signatures), and that other ECUs can verify the signature for a subset of monitored CAN identifiers. Extensive experimental results based on Vectors Informatik's CANoe/CANalyzer simulation environment and the data set provided by Hacking and Countermeasure Research Lab (HCRL) confirm the validity and applicability of the developed approach. Subsequent experiments including a test bed consisting of Raspberry Pi 3 Model B+ systems equipped with CAN communication modules demonstrate the practical integration of MixCAN in real automotive systems.
Schell, Oleg, Kneib, Marcel.  2020.  VALID: Voltage-Based Lightweight Intrusion Detection for the Controller Area Network. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :225–232.
The Controller Area Network (CAN), a broadcasting bus for intra-vehicle communication, does not provide any security mechanisms, although it is implemented in almost every vehicle. Attackers can exploit this issue, transmit malicious messages unnoticeably and cause severe harm. As the utilization of Message Authentication Codes (MACs) is only possible to a limited extent in resource-constrained systems, the focus is put on the development of Intrusion Detection Systems (IDSs). Due to their simple idea of operation, current developments are increasingly utilizing physical signal properties like voltages to realize these systems. Although the feasibility for CAN-based networks could be demonstrated, the least approaches consider the constrained resource-availability of vehicular hardware. To close this gap, we present Voltage-Based Lightweight Intrusion Detection (VALID), which provides physics-based intrusion detection with low resource requirements. By utilizing solely the individual voltage levels on the network during communication, the system detects unauthorized message transmissions without any sophisticated sampling approaches and feature calculations. Having performed evaluations on data from two real vehicles, we show that VALID is not only able to detect intrusions with an accuracy of 99.54 %, but additionally is capable of identifying the attack source reliably. These properties make VALID one of the most lightweight intrusion detection approaches that is ready-to-use, as it can be easily implemented on hardware already installed in vehicles and does not require any further components. Additionally, this allows existing platforms to be retrofitted and vehicular security systems to be improved and extended.
Sunny, Jerin, Sankaran, Sriram, Saraswat, Vishal.  2020.  A Hybrid Approach for Fast Anomaly Detection in Controller Area Networks. 2020 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). :1–6.
Recent advancements in the field of in-vehicle network and wireless communication, has been steadily progressing. Also, the advent of technologies such as Vehicular Adhoc Networks (VANET) and Intelligent Transportation System (ITS), has transformed modern automobiles into a sophisticated cyber-physical system rather than just a isolated mechanical device. Modern automobiles rely on many electronic control units communicating over the Controller Area Network (CAN) bus. Although protecting the car's external interfaces is an vital part of preventing attacks, detecting malicious activity on the CAN bus is an effective second line of defense against attacks. This paper proposes a hybrid anomaly detection system for CAN bus based on patterns of recurring messages and time interval of messages. The proposed method does not require modifications in CAN bus. The proposed system is evaluated on real CAN bus traffic with simulated attack scenarios. Results obtained show that our proposed system achieved a good detection rate with fast response times.
Zhang, Xing, Cui, Xiaotong, Cheng, Kefei, Zhang, Liang.  2020.  A Convolutional Encoder Network for Intrusion Detection in Controller Area Networks. 2020 16th International Conference on Computational Intelligence and Security (CIS). :366–369.
Integrated with various electronic control units (ECUs), vehicles are becoming more intelligent with the assistance of essential connections. However, the interaction with the outside world raises great concerns on cyber-attacks. As a main standard for in-vehicle network, Controller Area Network (CAN) does not have any built-in security mechanisms to guarantee a secure communication. This increases risks of denial of service, remote control attacks by an attacker, posing serious threats to underlying vehicles, property and human lives. As a result, it is urgent to develop an effective in-vehicle network intrusion detection system (IDS) for better security. In this paper, we propose a Feature-based Sliding Window (FSW) to extract the feature of CAN Data Field and CAN IDs. Then we construct a convolutional encoder network (CEN) to detect network intrusion of CAN networks. The proposed FSW-CEN method is evaluated on real-world datasets. The experimental results show that compared to traditional data processing methods and convolutional neural networks, our method is able to detect attacks with a higher accuracy in terms of detection accuracy and false negative rate.
2021-08-31
Tosh, Deepak, Galindo, Oscar, Kreinovich, Vladik, Kosheleva, Olga.  2020.  Towards Security of Cyber-Physical Systems using Quantum Computing Algorithms. 2020 IEEE 15th International Conference of System of Systems Engineering (SoSE). :313—320.
For cyber-physical systems (CPS), ensuring process and data security is critically important since the corresponding infrastructure needs to have high operational efficiency with no downtime. There are many techniques available that make communications in CPS environments secure - such as enabling traffic encryption between sensors and the computers processing the sensor's data, incorporating message authentication codes to achieve integrity, etc. However, most of these techniques are dependent on some form of symmetric or asymmetric cryptographic algorithms like AES and RSA. These algorithms are under threat because of the emerging quantum computing paradigm: with quantum computing, these encryption algorithms can be potentially broken. It is therefore desirable to explore the use of quantum cryptography - which cannot be broken by quantum computing - for securing the classical communications infrastructure deployed in CPS. In this paper, we discuss possible consequences of this option. We also explain how quantum computers can help even more: namely, they can be used to maximize the system's security where scalability is never a constraint, and to ensure we are not wasting time cycles on communicating and processing irrelevant information.
Won, Hoyun, Hong, Yang-Ki, Choi, Minyeong, Yoon, Hwan-sik, Li, Shuhui, Haskew, Tim.  2020.  Novel Efficiency-shifting Radial-Axial Hybrid Interior Permanent Magnet Sychronous Motor for Electric Vehicle. 2020 IEEE Energy Conversion Congress and Exposition (ECCE). :47–52.
A novel efficiency-shifting radial-axial hybrid permanent magnet synchronous motor that can realize two high-efficiency regions at low and high speeds is developed to extend the maximum driving distance and track the reference speed more accurately for electric vehicle application. The motor has two stators, which are radial and axial, to rotate one shared rotor. The rotor employs two combined topologies, i.e., inner surface-inset-mounted and outer V-shaped interior-mounted. For both outer and inner permanent magnets, Nd-Fe-B, having the remanent flux density of 1.23 T and coercivity of 890 kA/m, is used. The simulation result shows that the designed motor exhibits not only high maximum torque of 400 Nm and the maximum speed of 18,000 rpm but also two high-efficiency regions of 97.6 % and 92.0 % at low and high speed, respectively. Lastly, the developed motor shows better performance than corresponding separated radial and axial permanent magnet motor.
Castro-Coronado, Habib, Antonino-Daviu, Jose, Quijano-López, Alfredo, Fuster-Roig, Vicente, Llovera-Segovia, Pedro.  2020.  Evaluation of the Detectability of Damper Cage Damages in Synchronous Motors through the Advanced Analysis of the Stray Flux. 2020 IEEE Energy Conversion Congress and Exposition (ECCE). :2058–2063.
The determination of the damper cage health is a matter of great importance in those industries that use large synchronous motors in their processes. In the past, unexpected damages of that element implied economic losses amounting up to several million \$. The problem is that, in the technical literature, there is a lack of non-invasive techniques enabling the reliable condition monitoring of this element. This explains the fact that, in industry, rudimentary methods are still employed to determine its condition. This paper proposes the analysis of the stray flux as a way to determine the condition of the damper cage. The paper shows that the analysis of the stray flux under starting yields characteristic time-frequency signatures of the fault components that can be used to reliably determine the condition of the damper. Moreover, the analysis of the stray flux at steady-state operation under asynchronous mode could give useful information to this end. The paper also analyses the influence of the remanent magnetism in the rotor of some synchronous motors, which can make the damper cage diagnosis more difficult; some solutions to this problem are also suggested in the paper.
Nonprivun, Choktawee, Plangklang, Boonyang.  2020.  Study and Analysis of Flux Linkage on 12/8 pole Doubly Salient Permanent Magnet Machine in Square Envelope. 2020 International Conference on Power, Energy and Innovations (ICPEI). :141–144.
This paper presents a study and analysis of flux linkage performance on 12/8 pole doubly salient permanent magnet machine in square envelope conventional. Analyzed model was using a finite element method. The investigated model was constructed by changing the size of the structure as the main parameters of the speed 500 rpm, PM coercivity 910 kA/m, PM remanence 1.2 T, copper loss 30 W, turns per coil 45, and stator side length 100 mm. The study and analysis of flux linkage, induced voltage, and torque are also included in this paper.
Yang, Jiahui, Yuan, Yao, Wang, Shuaibing, Bao, Lianwei, Wang, Ren.  2020.  No-load Switch-in Transient Process Simulation of 500kV Interface Transformer Used in HVDC Flexible. 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE). :1–4.
Interface transformer used in asynchronous networking was a kind of special transformer which's different from normal power transformer. During no-load switch-in, the magnitude of inrush current will be high, and the waveform distortion also be severity. Maybe the protections will be activated, even worse may lead the lockdown of the DC system. In this paper, field-circuit coupled finite element method was used for the study of transient characteristic of no-load switch-in, remanence simulation methods were presented. Quantitative analysis of the effect of closing making angle and core remanence on inrush current peak value, meanwhile, the distribution of magnetic field inside the tank during the transient process. The result indicated that the closing making angle and core remanence have obvious effect on inrush current peak value. The research results of this paper can be used to guide the formulation of no-load switch-in strategy of interface transformer, which was of great significance to ensure the smooth operation of HVDC Flexible system.
Murai, Toshiya, Shoji, Yuya, Nishiyama, Nobuhiko, Mizumoto, Tetsuya.  2020.  Magneto-Optical Isolator and Self-Holding Optical Switch Integrated with Thin-Film Magnet. 2020 Conference on Lasers and Electro-Optics (CLEO). :1–2.
Novel magneto-optical isolator and self-holding optical switch with an a-Si:H microring resonator are demonstrated. The devices are driven by the remanence of integrated thin-film magnet and, therefore, maintain their state without any power supply.
Loreto, Jayson, Gerasta, Olga Joy L., Gumera, Aileen C..  2020.  Residual Current Circuit Implemented in Complementary Metal Oxide Semiconductor for Remanence Correction. 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM). :1–6.
This research paper presented a design that will address the challenges brought by remanence in ground-fault current interrupter devices (gfci). Remanence or residual magnetism is the magnetization left behind in a ferromagnetic material (such as iron) after an external magnetic field is removed. Remanence will make the gfci devices less accurate and less reliable in tripping the current above threshold in just five (5) years. It affects the performance of the device in terms of efficiency, accuracy, and response time. In this research, the problems caused by remanence were alleviated by using two identical transformers in detecting residual current both for hot and neutral wires. The difference of the current detected by the two transformers will be the basis of the signal threshold in tripping the device. By doing so, the problems caused by remanence phenomenon will be solved without compromising the response time of the circuit which is around 16 mS. The design will extend the life span of GFCI devices up to 15 years.
2021-07-28
Aigner, Andreas, Khelil, Abdelmajid.  2020.  A Semantic Model-Based Security Engineering Framework for Cyber-Physical Systems. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1826—1833.
The coupling of safety-relevant embedded- and cyber-space components to build Cyber-Physical Systems (CPS) extends the functionality and quality in many business domains, while also creating new ones. Prime examples like Internet of Things and Industry 4.0 enable new technologies and extend the service capabilities of physical entities by building a universe of connected devices. In addition to higher complexity, the coupling of these heterogeneous systems results in many new challenges, which should be addressed by engineers and administrators. Here, security represents a major challenge, which may be well addressed in cyber-space engineering, but less in embedded system or CPS design. Although model-based engineering provides significant benefits for system architects, like reducing complexity and automated analysis, as well as being considered as standard methodology in embedded systems design, the aspect of security may not have had a major role in traditional engineering concepts. Especially the characteristics of CPS, as well as the coupling of safety-relevant (physical) components with high-scalable entities of the cyber-space domain have an enormous impact on the overall level of security, based on the introduced side effects and uncertainties. Therefore, we aim to define a model-based security-engineering framework, which is tailored to the needs of CPS engineers. Hereby, we focus on the actual modeling process, the evaluation of security, as well as quantitatively expressing security of a deployed CPS. Overall and in contrast to other approaches, we shift the engineering concepts on a semantic level, which allows to address the proposed challenges in CPS in the most efficient way.
Aigner, Andreas, Khelil, Abdelmajid.  2020.  A Scoring System to Efficiently Measure Security in Cyber-Physical Systems. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1141—1145.
The importance of Cyber-Physical Systems (CPS) gains more and more weight in our daily business and private life. Although CPS build the backbone for major trends, like Industry 4.0 and connected vehicles, they also propose many new challenges. One major challenge can be found in achieving a high level of security within such highly connected environments, in which an unpredictable number of heterogeneous systems with often-distinctive characteristics interact with each other. In order to develop high-level security solutions, system designers must eventually know the current level of security of their specification. To this end, security metrics and scoring frameworks are essential, as they quantitatively express security of a given design or system. However, existing solutions may not be able to handle the proposed challenges of CPS, as they mainly focus on one particular system and one specific attack. Therefore, we aim to elaborate a security scoring mechanism, which can efficiently be used in CPS, while considering all essential information. We break down each system within the CPS into its core functional blocks and analyze a variety of attacks in terms of exploitability, scalability of attacks, as well as potential harm to targeted assets. With this approach, we get an overall assessment of security for the whole CPS, as it integrates the security-state of all interacting systems. This allows handling the presented complexity in CPS in a more efficient way, than existing solutions.
2021-06-30
Zhao, Yi, Jia, Xian, An, Dou, Yang, Qingyu.  2020.  LSTM-Based False Data Injection Attack Detection in Smart Grids. 2020 35th Youth Academic Annual Conference of Chinese Association of Automation (YAC). :638—644.
As a typical cyber-physical system, smart grid has attracted growing attention due to the safe and efficient operation. The false data injection attack against energy management system is a new type of cyber-physical attack, which can bypass the bad data detector of the smart grid to influence the results of state estimation directly, causing the energy management system making wrong estimation and thus affects the stable operation of power grid. We transform the false data injection attack detection problem into binary classification problem in this paper, which use the long-term and short-term memory network (LSTM) to construct the detection model. After that, we use the BP algorithm to update neural network parameters and utilize the dropout method to alleviate the overfitting problem and to improve the detection accuracy. Simulation results prove that the LSTM-based detection method can achieve higher detection accuracy comparing with the BPNN-based approach.
2021-05-26
Boursinos, Dimitrios, Koutsoukos, Xenofon.  2020.  Trusted Confidence Bounds for Learning Enabled Cyber-Physical Systems. 2020 IEEE Security and Privacy Workshops (SPW). :228—233.

Cyber-physical systems (CPS) can benefit by the use of learning enabled components (LECs) such as deep neural networks (DNNs) for perception and decision making tasks. However, DNNs are typically non-transparent making reasoning about their predictions very difficult, and hence their application to safety-critical systems is very challenging. LECs could be integrated easier into CPS if their predictions could be complemented with a confidence measure that quantifies how much we trust their output. The paper presents an approach for computing confidence bounds based on Inductive Conformal Prediction (ICP). We train a Triplet Network architecture to learn representations of the input data that can be used to estimate the similarity between test examples and examples in the training data set. Then, these representations are used to estimate the confidence of set predictions from a classifier that is based on the neural network architecture used in the triplet. The approach is evaluated using a robotic navigation benchmark and the results show that we can computed trusted confidence bounds efficiently in real-time.

2021-05-25
Hopkins, Stephen, Kalaimannan, Ezhil, John, Caroline Sangeetha.  2020.  Cyber Resilience using State Estimation Updates Based on Cyber Attack Matrix Classification. 2020 IEEE Kansas Power and Energy Conference (KPEC). :1—6.
Cyber-physical systems (CPS) maintain operation, reliability, and safety performance using state estimation and control methods. Internet connectivity and Internet of Things (IoT) devices are integrated with CPS, such as in smart grids. This integration of Operational Technology (OT) and Information Technology (IT) brings with it challenges for state estimation and exposure to cyber-threats. This research establishes a state estimation baseline, details the integration of IT, evaluates the vulnerabilities, and develops an approach for detecting and responding to cyber-attack data injections. Where other approaches focus on integration of IT cyber-controls, this research focuses on development of classification tools using data currently available in state estimation methods to quantitatively determine the presence of cyber-attack data. The tools may increase computational requirements but provide methods which can be integrated with existing state estimation methods and provide for future research in state estimation based cyber-attack incident response. A robust cyber-resilient CPS includes the ability to detect and classify a cyber-attack, determine the true system state, and respond to the cyber-attack. The purpose of this paper is to establish a means for a cyber aware state estimator given the existence of sub-erroneous outlier detection, cyber-attack data weighting, cyber-attack data classification, and state estimation cyber detection.
Barbeau, Michel, Cuppens, Frédéric, Cuppens, Nora, Dagnas, Romain, Garcia-Alfaro, Joaquin.  2020.  Metrics to Enhance the Resilience of Cyber-Physical Systems. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1167—1172.
We focus on resilience towards covert attacks on Cyber-Physical Systems (CPS). We define the new k-steerability and l-monitorability control-theoretic concepts. k-steerability reflects the ability to act on every individual plant state variable with at least k different groups of functionally diverse input signals. l-monitorability indicates the ability to monitor every individual plant state variable with £ different groups of functionally diverse output signals. A CPS with k-steerability and l-monitorability is said to be (k, l)-resilient. k and l, when both greater than one, provide the capability to mitigate the impact of covert attacks when some signals, but not all, are compromised. We analyze the influence of k and l on the resilience of a system and the ability to recover its state when attacks are perpetrated. We argue that the values of k and l can be augmented by combining redundancy and diversity in hardware and software techniques that apply the moving target paradigm.
Ouchani, Samir, Khebbeb, Khaled, Hafsi, Meriem.  2020.  Towards Enhancing Security and Resilience in CPS: A Coq-Maude based Approach. 2020 IEEE/ACS 17th International Conference on Computer Systems and Applications (AICCSA). :1—6.
Cyber-Physical Systems (CPS) have gained considerable interest in the last decade from both industry and academia. Such systems have proven particularly complex and provide considerable challenges to master their design and ensure their functionalities. In this paper, we intend to tackle some of these challenges related to the security and the resilience of CPS at the design level. We initiate a CPS modeling approach to specify such systems structure and behaviors, analyze their inherent properties and to overcome threats in terms of security and correctness. In this initiative, we consider a CPS as a network of entities that communicate through physical and logical channels, and which purpose is to achieve a set of tasks expressed as an ordered tree. Our modeling approach proposes a combination of the Coq theorem prover and the Maude rewriting system to ensure the soundness and correctness of CPS design. The introduced solution is illustrated through an automobile manufacturing case study.
Zanin, M., Menasalvas, E., González, A. Rodriguez, Smrz, P..  2020.  An Analytics Toolbox for Cyber-Physical Systems Data Analysis: Requirements and Challenges. 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). :271–276.
The fast improvement in telecommunication technologies that has characterised the last decade is enabling a revolution centred on Cyber-Physical Systems (CPSs). Elements inside cities, from vehicles to cars, can now be connected and share data, describing both our environment and our behaviours. These data can also be used in an active way, by becoming the tenet of innovative services and products, i.e. of Cyber-Physical Products (CPPs). Still, having data is not tantamount to having knowledge, and an important overlooked topic is how should them be analysed. In this contribution we tackle the issue of the development of an analytics toolbox for processing CPS data. Specifically, we review and quantify the main requirements that should be fulfilled, both functional (e.g. flexibility or dependability) and technical (e.g. scalability, response time, etc.). We further propose an initial set of analysis that should in it be included. We finally review some challenges and open issues, including how security and privacy could be tackled by emerging new technologies.
Alabadi, Montdher, Albayrak, Zafer.  2020.  Q-Learning for Securing Cyber-Physical Systems : A survey. 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1–13.
A cyber-physical system (CPS) is a term that implements mainly three parts, Physical elements, communication networks, and control systems. Currently, CPS includes the Internet of Things (IoT), Internet of Vehicles (IoV), and many other systems. These systems face many security challenges and different types of attacks, such as Jamming, DDoS.CPS attacks tend to be much smarter and more dynamic; thus, it needs defending strategies that can handle this level of intelligence and dynamicity. Last few years, many researchers use machine learning as a base solution to many CPS security issues. This paper provides a survey of the recent works that utilized the Q-Learning algorithm in terms of security enabling and privacy-preserving. Different adoption of Q-Learning for security and defending strategies are studied. The state-of-the-art of Q-learning and CPS systems are classified and analyzed according to their attacks, domain, supported techniques, and details of the Q-Learning algorithm. Finally, this work highlight The future research trends toward efficient utilization of Q-learning and deep Q-learning on CPS security.
Anubi, Olugbenga Moses, Konstantinou, Charalambos, Wong, Carlos A., Vedula, Satish.  2020.  Multi-Model Resilient Observer under False Data Injection Attacks. 2020 IEEE Conference on Control Technology and Applications (CCTA). :1–8.

In this paper, we present the concept of boosting the resiliency of optimization-based observers for cyber-physical systems (CPS) using auxiliary sources of information. Due to the tight coupling of physics, communication and computation, a malicious agent can exploit multiple inherent vulnerabilities in order to inject stealthy signals into the measurement process. The problem setting considers the scenario in which an attacker strategically corrupts portions of the data in order to force wrong state estimates which could have catastrophic consequences. The goal of the proposed observer is to compute the true states in-spite of the adversarial corruption. In the formulation, we use a measurement prior distribution generated by the auxiliary model to refine the feasible region of a traditional compressive sensing-based regression problem. A constrained optimization-based observer is developed using l1-minimization scheme. Numerical experiments show that the solution of the resulting problem recovers the true states of the system. The developed algorithm is evaluated through a numerical simulation example of the IEEE 14-bus system.