Visible to the public Biblio

Found 609 results

Filters: Keyword is Cyber-physical systems  [Clear All Filters]
2022-03-08
Yuan, Fuxiang, Shang, Yu, Yang, Dingge, Gao, Jian, Han, Yanhua, Wu, Jingfeng.  2021.  Comparison on Multiple Signal Analysis Method in Transformer Core Looseness Fault. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :908–911.
The core looseness fault is an important part of transformer fault. The state of the core can be obtained by analyzing the vibration signal. Vibration analysis method has been used in transformer condition monitoring and fault diagnosis for many years, while different methods produce different results. In order to select the correct method in engineering application, five kinds of joint time-frequency analysis methods, such as short-time Fourier transform, Wigner-Ville distribution, S transform, wavelet transform and empirical mode decomposition are compared, and the advantages and disadvantages of these methods for dealing with the vibration signal of transformer core are analyzed in this paper. It indicates that wavelet transform and empirical mode decomposition have more advantages in the diagnosis of core looseness fault. The conclusions have referential significance for the diagnosis of transformer faults in engineering.
Zhang, Jing.  2021.  Application of multi-fault diagnosis based on discrete event system in industrial sensor network. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :1122–1126.
This paper presents a method to improve the diagnosability of power network under multiple faults. In this paper, the steps of fault diagnosis are as follows: first, constructing finite automata model of the diagnostic system; then, a fault diagnoser model is established through coupling operation and trajectory reasoning mechanism; finally, the diagnosis results are obtained through this model. In this paper, the judgment basis of diagnosability is defined. Then, based on the existing diagnosis results, the information available can be increased by adding sensor devices, to achieve the purpose of diagnosability in the case of multiple faults of the system.
2022-03-02
Zhao, Younan, Zhu, Fanglai.  2021.  Security Control of Cyber-Physical Systems under Denial-of-Service Sensor Attack: A Switching Approach. 2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS). :1112–1117.
This paper presents an observer-based security control scheme for a Cyber-Physical System (CPS). In the considered system, the feedback channel of the CPS may suffer from Denial-of-Service (DoS). To begin with, a time-delayed switching CPS model is constructed according to two different attack situations. And then, based on the switching model, an observer-based controller is designed in the cyber-layer, Meanwhile, the stability of the closed-loop system is analyzed based on H$ınfty$ stability of switching systems in view of Average Dwell Time (ADT). At last, the performance of the proposed security control scheme is illustrated by an numerical example in Simulation.
2022-03-01
Li, Dong, Jiao, Yiwen, Ge, Pengcheng, Sun, Kuanfei, Gao, Zefu, Mao, Feilong.  2021.  Classification Coding and Image Recognition Based on Pulse Neural Network. 2021 IEEE International Conference on Artificial Intelligence and Industrial Design (AIID). :260–265.
Based on the third generation neural network spiking neural network, this paper optimizes and improves a classification and coding method, and proposes an image recognition method. Firstly, the read image is converted into a spike sequence, and then the spike sequence is encoded in groups and sent to the neurons in the spike neural network. After learning and training for many times, the quantization standard code is obtained. In this process, the spike sequence transformation matrix and dynamic weight matrix are obtained, and the unclassified data are output through the same matrix for image recognition and classification. Simulation results show that the above methods can get correct coding and preliminary recognition classification, and the spiking neural network can be applied.
Ghanem, Samah A. M..  2021.  Network Coding Schemes for Time Variant/Invariant Channels with Smart Acknowledgment. 2020 International Conference on Communications, Signal Processing, and their Applications (ICCSPA). :1–6.
In this paper, we propose models and schemes for coded and uncoded packet transmission over time invariant (TIC) and time variant (TVC) channels. We provide an approximation of the delay induced assuming fmite number of time slots to transmit a given number of packets. We propose an adaptive physical layer (PHY)-aware coded scheme that designs smart acknowledgments (ACK) via an optimal selection of coded packets to transmit at a given SNR. We apply our proposed schemes to channels with complex fading behavior and high round trip (RTT) delays. We compare the accuracy of TVC coded scheme to the TIC coded scheme, and we show the throughput-delay efficacy of adaptive coded schemes driven by PHY-awareness in the mitigation of high RTT environments, with up to 3 fold gains.
Roy, Debaleena, Guha, Tanaya, Sanchez, Victor.  2021.  Graph Based Transforms based on Graph Neural Networks for Predictive Transform Coding. 2021 Data Compression Conference (DCC). :367–367.
This paper introduces the GBT-NN, a novel class of Graph-based Transform within the context of block-based predictive transform coding using intra-prediction. The GBT-NNis constructed by learning a mapping function to map a graph Laplacian representing the covariance matrix of the current block. Our objective of learning such a mapping functionis to design a GBT that performs as well as the KLT without requiring to explicitly com-pute the covariance matrix for each residual block to be transformed. To avoid signallingany additional information required to compute the inverse GBT-NN, we also introduce acoding framework that uses a template-based prediction to predict residuals at the decoder. Evaluation results on several video frames and medical images, in terms of the percentageof preserved energy and mean square error, show that the GBT-NN can outperform the DST and DCT.
Triphena, Jeba, Thirumavalavan, Vetrivel Chelian, Jayaraman, Thiruvengadam S.  2021.  BER Analysis of RIS Assisted Bidirectional Relay System with Physical Layer Network Coding. 2021 National Conference on Communications (NCC). :1–6.
Reconfigurable Intelligent Surface (RIS) is one of the latest technologies in bringing a certain amount of control to the rather unpredictable and uncontrollable wireless channel. In this paper, RIS is introduced in a bidirectional system with two source nodes and a Decode and Forward (DF) relay node. It is assumed that there is no direct path between the source nodes. The relay node receives information from source nodes simultaneously. The Physical Layer Network Coding (PLNC) is applied at the relay node to assist in the exchange of information between the source nodes. Analytical expressions are derived for the average probability of errors at the source nodes and relay node of the proposed RIS-assisted bidirectional relay system. The Bit Error Rate (BER) performance is analyzed using both simulation and analytical forms. It is observed that RIS-assisted PLNC based bidirectional relay system performs better than the conventional PLNC based bidirectional system.
Liu, Jinghua, Chen, Pingping, Chen, Feng.  2021.  Performance of Deep Learning for Multiple Antennas Physical Layer Network Coding. 2021 15th International Symposium on Medical Information and Communication Technology (ISMICT). :179–183.
In this paper, we propose a deep learning based detection for multiple input multiple output (MIMO) physical-layer network coding (DeepPNC) over two way relay channels (TWRC). In MIMO-PNC, the relay node receives the signals superimposed from the two end nodes. The relay node aims to obtain the network-coded (NC) form of the two end nodes' signals. By training suitable deep neural networks (DNNs) with a limited set of training samples. DeepPNC can extract the NC symbols from the superimposed signals received while the output of each layer in DNNs converges. Compared with the traditional detection algorithms, DeepPNC has higher mapping accuracy and does not require channel information. The simulation results show that the DNNs based DeepPNC can achieve significant gain over the DeepNC scheme and the other traditional schemes, especially when the channel matrix changes unexpectedly.
ElDiwany, Belal Essam, El-Sherif, Amr A., ElBatt, Tamer.  2021.  Network-Coded Wireless Powered Cellular Networks: Lifetime and Throughput Analysis. 2021 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
In this paper, we study a wireless powered cellular network (WPCN) supported with network coding capability. In particular, we consider a network consisting of k cellular users (CUs) served by a hybrid access point (HAP) that takes over energy transfer to the users on top of information transmission over both the uplink (UL) and downlink (DL). Each CU has k+1 states representing its communication behavior, and collectively are referred to as the user demand profile. Opportunistically, when the CUs have information to be exchanged through the HAP, it broadcasts this information in coded format to the exchanging pairs, resulting in saving time slots over the DL. These saved slots are then utilized by the HAP to prolong the network lifetime and enhance the network throughput. We quantify, analytically, the performance gain of our network-coded WPCN over the conventional one, that does not employ network coding, in terms of network lifetime and throughput. We consider the two extreme cases of using all the saved slots either for energy boosting or throughput enhancement. In addition, a lifetime/throughput optimization is carried out by the HAP for balancing the saved slots assignment in an optimized fashion, where the problem is formulated as a mixed-integer linear programming optimization problem. Numerical results exhibit the network performance gains from the lifetime and throughput perspectives, for a uniform user demand profile across all CUs. Moreover, the effect of biasing the user demand profile of some CUs in the network reveals considerable improvement in the network performance gains.
Wang, Jie, Jia, Zhiyuan, Yin, Hoover H. F., Yang, Shenghao.  2021.  Small-Sample Inferred Adaptive Recoding for Batched Network Coding. 2021 IEEE International Symposium on Information Theory (ISIT). :1427–1432.
Batched network coding is a low-complexity network coding solution to feedbackless multi-hop wireless packet network transmission with packet loss. The data to be transmitted is encoded into batches where each of which consists of a few coded packets. Unlike the traditional forwarding strategy, the intermediate network nodes have to perform recoding, which generates recoded packets by network coding operations restricted within the same batch. Adaptive recoding is a technique to adapt the fluctuation of packet loss by optimizing the number of recoded packets per batch to enhance the throughput. The input rank distribution, which is a piece of information regarding the batches arriving at the node, is required to apply adaptive recoding. However, this distribution is not known in advance in practice as the incoming link's channel condition may change from time to time. On the other hand, to fully utilize the potential of adaptive recoding, we need to have a good estimation of this distribution. In other words, we need to guess this distribution from a few samples so that we can apply adaptive recoding as soon as possible. In this paper, we propose a distributionally robust optimization for adaptive recoding with a small-sample inferred prediction of the input rank distribution. We develop an algorithm to efficiently solve this optimization with the support of theoretical guarantees that our optimization's performance would constitute as a confidence lower bound of the optimal throughput with high probability.
Chen, Xuejun, Dong, Ping, Zhang, Yuyang, Qiao, Wenxuan, Yin, Chenyang.  2021.  Design of Adaptive Redundant Coding Concurrent Multipath Transmission Scheme in High-speed Mobile Environment. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:2176–2179.
As we all know, network coding can significantly improve the throughput and reliability of wireless networks. However, in the high-speed mobile environment, the packet loss rate of different wireless links may vary greatly due to the time-varying network state, which makes the adjustment of network coding redundancy very important. Because the network coding redundancy is too large, it will lead to excessive overhead and reduce the effective throughput. If the network coding redundancy is too small, it will lead to insufficient decoding, which will also reduce the effective throughput. In the design of multi-path transmission scheduling scheme, we introduce adaptive redundancy network coding scheme. By using multiple links to aggregate network bandwidth, we choose appropriate different coding redundancy for different links to resist the performance loss caused by link packet loss. The simulation results show that when the link packet loss rate is greatly different, the mechanism can not only ensure the transmission reliability, but also greatly reduce the total network redundancy to improve the network throughput very effectively.
Yin, Hoover H. F., Ng, Ka Hei, Zhong, Allen Z., Yeung, Raymond w., Yang, Shenghao.  2021.  Intrablock Interleaving for Batched Network Coding with Blockwise Adaptive Recoding. 2021 IEEE International Symposium on Information Theory (ISIT). :1409–1414.
Batched network coding (BNC) is a low-complexity solution to network transmission in feedbackless multi-hop packet networks with packet loss. BNC encodes the source data into batches of packets. As a network coding scheme, the intermediate nodes perform recoding on the received packets instead of just forwarding them. Blockwise adaptive recoding (BAR) is a recoding strategy which can enhance the throughput and adapt real-time changes in the incoming channel condition. In wireless applications, in order to combat burst packet loss, interleavers can be applied for BNC in a hop-by-hop manner. In particular, a batch-stream interleaver that permutes packets across blocks can be applied with BAR to further boost the throughput. However, the previously proposed minimal communication protocol for BNC only supports permutation of packets within a block, called intrablock interleaving, and so it is not compatible with the batch-stream interleaver. In this paper, we design an intrablock interleaver for BAR that is backward compatible with the aforementioned minimal protocol, so that the throughput can be enhanced without upgrading all the existing devices.
Bartz, Hannes, Puchinger, Sven.  2021.  Decoding of Interleaved Linearized Reed-Solomon Codes with Applications to Network Coding. 2021 IEEE International Symposium on Information Theory (ISIT). :160–165.
Recently, Martínez-Peñas and Kschischang (IEEE Trans. Inf. Theory, 2019) showed that lifted linearized Reed-Solomon codes are suitable codes for error control in multishot network coding. We show how to construct and decode lifted interleaved linearized Reed-Solomon codes. Compared to the construction by Martínez-Peñas-Kschischang, interleaving allows to increase the decoding region significantly (especially w.r.t. the number of insertions) and decreases the overhead due to the lifting (i.e., increases the code rate), at the cost of an increased packet size. The proposed decoder is a list decoder that can also be interpreted as a probabilistic unique decoder. Although our best upper bound on the list size is exponential, we present a heuristic argument and simulation results that indicate that the list size is in fact one for most channel realizations up to the maximal decoding radius.
Yin, Hoover H. F., Xu, Xiaoli, Ng, Ka Hei, Guan, Yong Liang, Yeung, Raymond w..  2021.  Analysis of Innovative Rank of Batched Network Codes for Wireless Relay Networks. 2021 IEEE Information Theory Workshop (ITW). :1–6.
Wireless relay network is a solution for transmitting information from a source node to a sink node far away by installing a relay in between. The broadcasting nature of wireless communication allows the sink node to receive part of the data sent by the source node. In this way, the relay does not need to receive the whole piece of data from the source node and it does not need to forward everything it received. In this paper, we consider the application of batched network coding, a practical form of random linear network coding, for a better utilization of such a network. The amount of innovative information at the relay which is not yet received by the sink node, called the innovative rank, plays a crucial role in various applications including the design of the transmission scheme and the analysis of the throughput. We present a visualization of the innovative rank which allows us to understand and derive formulae related to the innovative rank with ease.
2022-02-24
Thirumavalavasethurayar, P, Ravi, T.  2021.  Implementation of Replay Attack in Controller Area Network Bus Using Universal Verification Methodology. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :1142–1146.

Controller area network is the serial communication protocol, which broadcasts the message on the CAN bus. The transmitted message is read by all the nodes which shares the CAN bus. The message can be eavesdropped and can be re-used by some other node by changing the information or send it by duplicate times. The message reused after some delay is replay attack. In this paper, the CAN network with three CAN nodes is implemented using the universal verification components and the replay attack is demonstrated by creating the faulty node. Two types of replay attack are implemented in this paper, one is to replay the entire message and the other one is to replay only the part of the frame. The faulty node uses the first replay attack method where it behaves like the other node in the network by duplicating the identifier. CAN frame except the identifier is reused in the second method which is hard to detect the attack as the faulty node uses its own identifier and duplicates only the data in the CAN frame.

2022-02-03
Maksuti, Silia, Pickem, Michael, Zsilak, Mario, Stummer, Anna, Tauber, Markus, Wieschhoff, Marcus, Pirker, Dominic, Schmittner, Christoph, Delsing, Jerker.  2021.  Establishing a Chain of Trust in a Sporadically Connected Cyber-Physical System. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :890—895.
Drone based applications have progressed significantly in recent years across many industries, including agriculture. This paper proposes a sporadically connected cyber-physical system for assisting winemakers and minimizing the travel time to remote and poorly connected infrastructures. A set of representative diseases and conditions, which will be monitored by land-bound sensors in combination with multispectral images, is identified. To collect accurate data, a trustworthy and secured communication of the drone with the sensors and the base station should be established. We propose to use an Internet of Things framework for establishing a chain of trust by securely onboarding drones, sensors and base station, and providing self-adaptation support for the use case. Furthermore, we perform a security analysis of the use case for identifying potential threats and security controls that should be in place for mitigating them.
Zhang, Kevin, Olmsted, Aspen.  2021.  Examining Autonomous Vehicle Operating Systems Vulnerabilities using a Cyber-Physical Approach. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). :976—981.
Increasingly, the transportation industry has moved towards automation to improve safety, fuel efficiency, and system productivity. However, the increased scrutiny that automated vehicles (AV) face over functional safety has hindered the industry's unbridled confidence in self-driving technologies. As AVs are cyber-physical systems, they utilize distributed control to accomplish a range of safety-critical driving tasks. The Operation Systems (OS) serve as the core of these control systems. Therefore, their designs and implementation must incorporate ways to protect AVs against what must be assumed to be inevitable cyberattacks to meet the overall AV functional safety requirements. This paper investigates the connection between functional safety and cybersecurity in the context of OS. This study finds that risks due to delays can worsen by potential cybersecurity vulnerabilities through a case example of an automated vehicle following. Furthermore, attack surfaces and cybersecurity countermeasures for protecting OSs from security breaches are addressed.
2022-01-25
Geng, Zhang, Yanan, Wang, Guojing, Liu, Xueqing, Wang, Kaiqiang, Gao, Jiye, Wang.  2021.  A Trusted Data Storage and Access Control Scheme for Power CPS Combining Blockchain and Attribute-Based Encryption. 2021 IEEE 21st International Conference on Communication Technology (ICCT). :355–359.
The traditional data storage method often adopts centralized architecture, which is prone to trust and security problems. This paper proposes a trusted data storage and access control scheme combining blockchain and attribute-based encryption, which allow cyber-physical system (CPS) nodes to realize the fine-grained access control strategy. At the same time, this paper combines the blockchain technology with distributed storage, and only store the access control policy and the data access address on the blockchain, which solves the storage bottleneck of blockchain system. Furthermore, this paper proposes a novel multi-authority attributed-based identification method, which realizes distributed attribute key generation and simplifies the pairwise authentication process of multi-authority. It can not only address the key escrow problem of one single authority, but also reduce the problem of high communication overhead and heavy burden of multi-authority. The analyzed results show that the proposed scheme has better comprehensive performance in trusted data storage and access control for power cyber-physical system.
Shepherd, Carlton, Markantonakis, Konstantinos, Jaloyan, Georges-Axel.  2021.  LIRA-V: Lightweight Remote Attestation for Constrained RISC-V Devices. 2021 IEEE Security and Privacy Workshops (SPW). :221–227.
This paper presents LIRA-V, a lightweight system for performing remote attestation between constrained devices using the RISC-V architecture. We propose using read-only memory and the RISC-V Physical Memory Protection (PMP) primitive to build a trust anchor for remote attestation and secure channel creation. Moreover, we show how LIRA-V can be used for trusted communication between two devices using mutual attestation. We present the design, implementation and evaluation of LIRA-V using an off-the-shelf RISC-V microcontroller and present performance results to demonstrate its suitability. To our knowledge, we present the first remote attestation mechanism suitable for constrained RISC-V devices, with applications to cyber-physical systems and Internet of Things (IoT) devices.
2022-01-11
Foster, Rita, Priest, Zach, Cutshaw, Michael.  2021.  Infrastructure eXpression for Codified Cyber Attack Surfaces and Automated Applicability. 2021 Resilience Week (RWS). :1–4.
The internal laboratory directed research and development (LDRD) project Infrastructure eXpression (IX) at the Idaho National Laboratory (INL), is based on codifying infrastructure to support automatic applicability to emerging cyber issues, enabling automated cyber responses, codifying attack surfaces, and analysis of cyber impacts to our nation's most critical infrastructure. IX uses the Structured Threat Information eXpression (STIX) open international standard version 2.1 which supports STIX Cyber Observable (SCO) to codify infrastructure characteristics and exposures. Using these codified infrastructures, STIX Relationship Objects (SRO) connect to STIX Domain Objects (SDO) used for modeling cyber threat used to create attack surfaces integrated with specific infrastructure. This IX model creates a shareable, actionable and implementable attack surface that is updateable with emerging threat or infrastructure modifications. Enrichment of cyber threat information includes attack patterns, indicators, courses of action, malware and threat actors. Codifying infrastructure in IX enables creation of software and hardware bill of materials (SBoM/HBoM) information, analysis of emerging cyber vulnerabilities including supply chain threat to infrastructure.
2022-01-10
Paul, Avishek, Islam, Md Rabiul.  2021.  An Artificial Neural Network Based Anomaly Detection Method in CAN Bus Messages in Vehicles. 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI). :1–5.

Controller Area Network is the bus standard that works as a central system inside the vehicles for communicating in-vehicle messages. Despite having many advantages, attackers may hack into a car system through CAN bus, take control of it and cause serious damage. For, CAN bus lacks security services like authentication, encryption etc. Therefore, an anomaly detection system must be integrated with CAN bus in vehicles. In this paper, we proposed an Artificial Neural Network based anomaly detection method to identify illicit messages in CAN bus. We trained our model with two types of attacks so that it can efficiently identify the attacks. When tested, the proposed algorithm showed high performance in detecting Denial of Service attacks (with accuracy 100%) and Fuzzy attacks (with accuracy 99.98%).

2021-12-20
Sun, Ziwen, Zhang, Shuguo.  2021.  Modeling of Security Risk for Industrial Cyber-Physics System under Cyber-Attacks. 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS). :361–368.
Due to the insufficient awareness of decision makers on the security risks of industrial cyber-physical systems(ICPS) under cyber-attacks, it is difficult to take effective defensive measures according to the characteristics of different cyber-attacks in advance. To solve the above problem, this paper gives a qualitative analysis method of ICPS security risk from the perspective of defenders. The ICPS being attacked is modeled as a dynamic closed-loop fusion model where the mathematical models of the physical plant and the feedback controller are established. Based on the fusion model, the disruption resources generated by attacks are mathematically described. Based on the designed Kalman filter, the detection of attacks is judged according to the residual value of the system. According to the disruption resources and detectability, a general security risk level model is further established to evaluate the security risk level of the system under attacks. The simulation experiments are conducted by using Matlab to analyze the destructiveness and detectability of attacks, where the results show that the proposed qualitative analysis method can effectively describe the security risk under the cyber-attacks.
Tekeoglu, Ali, Bekiroglu, Korkut, Chiang, Chen-Fu, Sengupta, Sam.  2021.  Unsupervised Time-Series Based Anomaly Detection in ICS/SCADA Networks. 2021 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.
Traditionally, Industrial Control Systems (ICS) have been operated as air-gapped networks, without a necessity to connect directly to the Internet. With the introduction of the Internet of Things (IoT) paradigm, along with the cloud computing shift in traditional IT environments, ICS systems went through an adaptation period in the recent years, as the Industrial Internet of Things (IIoT) became popular. ICS systems, also called Cyber-Physical-Systems (CPS), operate on physical devices (i.e., actuators, sensors) at the lowest layer. An anomaly that effect this layer, could potentially result in physical damage. Due to the new attack surfaces that came about with IIoT movement, precise, accurate, and prompt intrusion/anomaly detection is becoming even more crucial in ICS. This paper proposes a novel method for real-time intrusion/anomaly detection based on a cyber-physical system network traffic. To evaluate the proposed anomaly detection method's efficiency, we run our implementation against a network trace taken from a Secure Water Treatment Testbed (SWAT) of iTrust Laboratory at Singapore.
Umar, Sani, Felemban, Muhamad, Osais, Yahya.  2021.  Advanced Persistent False Data Injection Attacks Against Optimal Power Flow in Power Systems. 2021 International Wireless Communications and Mobile Computing (IWCMC). :469–474.
Recently, cyber security in power systems has captured significant interest. This is because the world has seen a surge in cyber attacks on power systems. One of the prolific cyber attacks in modern power systems are False Data Injection Attacks (FDIA). In this paper, we analyzed the impact of FDIA on the operation cost of power systems. Also, we introduced a novel Advanced Persistent Threat (APT) based attack strategy that maximizes the operating costs when attacking specific nodes in the system. We model the attack strategy using an optimization problem and use metaheuristics algorithms to solve the optimization problem and execute the attack. We have found that our attacks can increase the power generation cost by up to 15.6%, 60.12%, and 74.02% on the IEEE 6-Bus systems, 30-Bus systems, and 118-Bus systems, respectively, as compared to normal operation.
Mikhailova, Vasilisa D., Shulika, Maria G., Basan, Elena S., Peskova, Olga Yu..  2021.  Security architecture for UAV. 2021 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :0431–0434.
Cyber-physical systems are used in many areas of human life. But people do not pay enough attention to ensuring the security of these systems. As a result of the resulting security gaps, an attacker can launch an attack, not only shutting down the system, but also having some negative impact on the environment. The article examines denial of service attacks in ad-hoc networks, conducts experiments and considers the consequences of their successful execution. As a result of the research, it was determined that an attack can be detected by changes in transmitted traffic and processor load. The cyber-physical system operates on stable algorithms, and even if legal changes occur, they can be easily distinguished from those caused by the attack. The article shows that the use of statistical methods for analyzing traffic and other parameters can be justified for detecting an attack. This study shows that each attack affects traffic in its own way and creates unique patterns of behavior change. The experiments were carried out according to methodology with changings in the intensity of the attacks, with a change in normal behavior. The results of this study can further be used to implement a system for detecting attacks on cyber-physical systems. The collected datasets can be used to train the neural network.