Biblio
With the recognition of cyberspace as an operating domain, concerted effort is now being placed on addressing it in the whole-of-domain manner found in land, sea, undersea, air, and space domains. Among the first steps in this effort is applying the standard supporting concepts of security, defense, and deterrence to the cyber domain. This paper presents an architecture that helps realize forward defense in cyberspace, wherein adversarial actions are repulsed as close to the origin as possible. However, substantial work remains in making the architecture an operational reality including furthering fundamental research cyber science, conducting design trade-off analysis, and developing appropriate public policy frameworks.
Fog computing is a new computing paradigm that utilizes numerous mutually cooperating terminal devices or network edge devices to provide computing, storage, and communication services. Fog computing extends cloud computing services to the edge of the network, making up for the deficiencies of cloud computing in terms of location awareness, mobility support and latency. However, fog nodes are not active enough to perform tasks, and fog nodes recruited by cloud service providers cannot provide stable and continuous resources, which limits the development of fog computing. In the process of cloud service providers using the resources in the fog nodes to provide services to users, the cloud service providers and fog nodes are selfish and committed to maximizing their own payoffs. This situation makes it easy for the fog node to work negatively during the execution of the task. Limited by the low quality of resource provided by fog nodes, the payoff of cloud service providers has been severely affected. In response to this problem, an appropriate incentive mechanism needs to be established in the fog computing environment to solve the core problems faced by both cloud service providers and fog nodes in maximizing their respective utility, in order to achieve the incentive effect. Therefore, this paper proposes an incentive model based on repeated game, and designs a trigger strategy with credible threats, and obtains the conditions for incentive consistency. Under this condition, the fog node will be forced by the deterrence of the trigger strategy to voluntarily choose the strategy of actively executing the task, so as to avoid the loss of subsequent rewards when it is found to perform the task passively. Then, using evolutionary game theory to analyze the stability of the trigger strategy, it proves the dynamic validity of the incentive consistency condition.
Federated learning is a distributed learning technique where machine learning models are trained on client devices in which the local training data resides. The training is coordinated via a central server which is, typically, controlled by the intended owner of the resulting model. By avoiding the need to transport the training data to the central server, federated learning improves privacy and efficiency. But it raises the risk of model theft by clients because the resulting model is available on every client device. Even if the application software used for local training may attempt to prevent direct access to the model, a malicious client may bypass any such restrictions by reverse engineering the application software. Watermarking is a well-known deterrence method against model theft by providing the means for model owners to demonstrate ownership of their models. Several recent deep neural network (DNN) watermarking techniques use backdooring: training the models with additional mislabeled data. Backdooring requires full access to the training data and control of the training process. This is feasible when a single party trains the model in a centralized manner, but not in a federated learning setting where the training process and training data are distributed among several client devices. In this paper, we present WAFFLE, the first approach to watermark DNN models trained using federated learning. It introduces a retraining step at the server after each aggregation of local models into the global model. We show that WAFFLE efficiently embeds a resilient watermark into models incurring only negligible degradation in test accuracy (-0.17%), and does not require access to training data. We also introduce a novel technique to generate the backdoor used as a watermark. It outperforms prior techniques, imposing no communication, and low computational (+3.2%) overhead$^\textrm1$$^\textrm1$\$The research report version of this paper is also available in https://arxiv.org/abs/2008.07298, and the code for reproducing our work can be found at https://github.com/ssg-research/WAFFLE.
Physical protection system (PPS) is developed to protect the assets or facilities against threats. A systematic analysis of the capabilities and intentions of potential threat capabilities is needed resulting in a so-called Design Basis Threat (DBT) document. A proper development of DBT is important to identify the system requirements that are required for adequately protecting a system and to optimize the resources needed for the PPS. In this paper we propose a model-based systems engineering approach for developing a DBT based on feature models. Based on a domain analysis process, we provide a metamodel that defines the key concepts needed for developing DBT. Subsequently, a reusable family feature model for PPS is provided that includes the common and variant properties of the PPS concepts detection, deterrence and response. The configuration processes are modeled to select and analyze the required features for implementing the threat scenarios. Finally, we discuss the integration of the DBT with the PPS design process.
The increasing volume of domestic and foreign trade brings new challenges to the efficiency and safety supervision of transportation. With the rapid development of Internet technology, it has opened up a new era of intelligent Internet of Things and the modern marine Internet of Vessels. Radio Frequency Identification technology strengthens the intelligent navigation and management of ships through the unique identification function of “label is object, object is label”. Intelligent Internet of Vessels can achieve the function of “limited electronic monitoring and unlimited electronic deterrence” combined with marine big data and Cyber Physical Systems, and further improve the level of modern maritime supervision and service.
Asymmetric warfare and anti-terrorist war have become a new style of military struggle in the new century, which will inevitably have an important impact on the military economy of various countries and catalyze the innovation climax of military logistics theory and practice. The war in the information age is the confrontation between systems, and “comprehensive integration” is not only the idea of information war ability construction, but also the idea of deterrence ability construction in the information age. Looking at the local wars under the conditions of modern informationization, it is not difficult to see that the status and role of light weapons and equipment have not decreased, on the contrary, higher demands have been put forward for their combat performance. From a forward-looking perspective, based on our army's preparation and logistics support for future asymmetric operations and anti-terrorist military struggle, this strategic issue is discussed in depth.
With big data and artificial intelligence, we conduct the research of the buyers' identification and involvement, and their investments such as time, experience and consultation in various channels are analyzed and iterated. We establish a set of AI channel governance system with the functions of members' behavior monitoring, transaction clearing and deterrence; Through the system, the horizontal spillover effect of their behavior is controlled. Thus, their unfair perception can be effectively reduced and the channel performance can be improved as well.