Biblio
Artificial Intelligence systems have enabled significant benefits for users and society, but whilst the data for their feeding are always increasing, a side to privacy and security leaks is offered. The severe vulnerabilities to the right to privacy obliged governments to enact specific regulations to ensure privacy preservation in any kind of transaction involving sensitive information. In the case of digital and/or physical documents comprising sensitive information, the right to privacy can be preserved by data obfuscation procedures. The capability of recognizing sensitive information for obfuscation is typically entrusted to the experience of human experts, who are over-whelmed by the ever increasing amount of documents to process. Artificial intelligence could proficiently mitigate the effort of the human officers and speed up processes. Anyway, until enough knowledge won't be available in a machine readable format, automatic and effectively working systems can't be developed. In this work we propose a methodology for transferring and leveraging general knowledge across specific-domain tasks. We built, from scratch, specific-domain knowledge data sets, for training artificial intelligence models supporting human experts in privacy preserving tasks. We exploited a mixture of natural language processing techniques applied to unlabeled domain-specific documents corpora for automatically obtain labeled documents, where sensitive information are recognized and tagged. We performed preliminary tests just over 10.000 documents from the healthcare and justice domains. Human experts supported us during the validation. Results we obtained, estimated in terms of precision, recall and F1-score metrics across these two domains, were promising and encouraged us to further investigations.
Monitoring for security and well-being in highly populated areas is a critical issue for city administrators, policy makers and urban planners. As an essential part of many dynamic and critical data-driven tasks, situational awareness (SAW) provides decision-makers a deeper insight of the meaning of urban surveillance. Thus, surveillance measures are increasingly needed. However, traditional surveillance platforms are not scalable when more cameras are added to the network. In this work, a smart surveillance as an edge service has been proposed. To accomplish the object detection, identification, and tracking tasks at the edge-fog layers, two novel lightweight algorithms are proposed for detection and tracking respectively. A prototype has been built to validate the feasibility of the idea, and the test results are very encouraging.
Developing mission-centric impact assessment techniques to address cyber resiliency in the cyber-physical systems (CPSs) requires integrating system inter-dependencies to the risk and resilience analysis process. Generally, network administrators utilize attack graphs to estimate possible consequences in a networked environment. Attack graphs lack to incorporate the operations-specific dependencies. Localizing the dependencies among operational missions, tasks, and the hosting devices in a large-scale CPS is also challenging. In this work, we offer a graphical modeling technique to integrate the mission-centric impact assessment of cyberattacks by relating the effect to the operational resiliency by utilizing a combination of the logical attack graph and mission impact propagation graph. We propose formal techniques to compute cyberattacks’ impact on the operational mission and offer an optimization process to minimize the same, having budgetary restrictions. We also relate the effect to the system functional operability. We illustrate our modeling techniques using a SCADA (supervisory control and data acquisition) case study for the cyber-physical power systems. We believe our proposed method would help evaluate and minimize the impact of cyber attacks on CPS’s operational missions and, thus, enhance cyber resiliency.
In this paper, a time-driven performance-aware mathematical model for trust in the robot is proposed for a Human-Robot Collaboration (HRC) framework. The proposed trust model is based on both the human operator and the robot performances. The human operator’s performance is modeled based on both the physical and cognitive performances, while the robot performance is modeled over its unpredictable, predictable, dependable, and faithful operation regions. The model is validated via different simulation scenarios. The simulation results show that the trust in the robot in the HRC framework is governed by robot performance and human operator’s performance and can be improved by enhancing the robot performance.
Trust is an important characteristic of successful interactions between humans and agents in many scenarios. Self-driving scenarios are of particular relevance when discussing the issue of trust due to the high-risk nature of erroneous decisions being made. The present study aims to investigate decision-making and aspects of trust in a realistic driving scenario in which an autonomous agent provides guidance to humans. To this end, a simulated driving environment based on a college campus was developed and presented. An online and an in-person experiment were conducted to examine the impacts of mistakes made by the self-driving AI agent on participants’ decisions and trust. During the experiments, participants were asked to complete a series of driving tasks and make a sequence of decisions in a time-limited situation. Behavior analysis indicated a similar relative trend in the decisions across these two experiments. Survey results revealed that a mistake made by the self-driving AI agent at the beginning had a significant impact on participants’ trust. In addition, similar overall experience and feelings across the two experimental conditions were reported. The findings in this study add to our understanding of trust in human-robot interaction scenarios and provide valuable insights for future research work in the field of human-robot trust.
The current study explored the influence of trust and distrust behaviors on performance, process, and purpose (trustworthiness) perceptions over time when participants were paired with a robot partner. We examined the changes in trustworthiness perceptions after trust violations and trust repair after those violations. Results indicated performance, process, and purpose perceptions were all affected by trust violations, but perceptions of process and purpose decreased more than performance following a distrust behavior. Similarly, trust repair was achieved in performance perceptions, but trust repair in perceived process and purpose was absent. When a trust violation occurred, process and purpose perceptions deteriorated and failed to recover from the violation. In addition, the trust violation resulted in untrustworthy perceptions of the robot. In contrast, trust violations decreased partner performance perceptions, and subsequent trust behaviors resulted in a trust repair. These findings suggest that people are more sensitive to distrust behaviors in their perceptions of process and purpose than they are in performance perceptions.
This paper describes a realisation of a ResNet face recognition method through Zigbee-based wireless protocol. The system uses a CC2530 Zigbee-based radio frequency chip with connected VC0706 camera on it. The Arduino Nano had been used for organisation of data compression and effective division of Zigbee packets. The proposed solution also simplifies a data transmission within a strict bandwidth of Zigbee protocol and reliable packet forwarding in case of frequency distortion. The following investigation model uses Raspberry Pi 3 with connected Zigbee End Device (ZED) for successful receiving of important images and acceleration of deep learning interfaces. The model is integrated into a smart security system based on Zigbee modules, MySQL database, Android application and works in the background by using daemons procedures. To protect data, all wireless connections had been encrypted by the 128-bit Advanced Encryption Standard (AES-128) algorithm. Experimental results show a possibility to implement complex systems under restricted requirements of available transmission protocols.
Traffic identification becomes more important yet more challenging as related encryption techniques are rapidly developing nowadays. In difference to recent deep learning methods that apply image processing to solve such encrypted traffic problems, in this paper, we propose a method named Payload Encoding Representation from Transformer (PERT) to perform automatic traffic feature extraction using a state-of-the-art dynamic word embedding technique. Based on this, we further provide a traffic classification framework in which unlabeled traffic is utilized to pre-train an encoding network that learns the contextual distribution of traffic payload bytes. Then, the downward classification reuses the pre-trained network to obtain an enhanced classification result. By implementing experiments on a public encrypted traffic data set and our captured Android HTTPS traffic, we prove the proposed method can achieve an obvious better effectiveness than other compared baselines. To the best of our knowledge, this is the first time the encrypted traffic classification with the dynamic word embedding alone with its pre-training strategy has been addressed.
Artificial neural networks in general and deep learning networks in particular established themselves as popular and powerful machine learning algorithms. While the often tremendous sizes of these networks are beneficial when solving complex tasks, the tremendous number of parameters also causes such networks to be vulnerable to malicious behavior such as adversarial perturbations. These perturbations can change a model's classification decision. Moreover, while single-step adversaries can easily be transferred from network to network, the transfer of more powerful multi-step adversaries has - usually - been rather difficult.In this work, we introduce a method for generating strong adversaries that can easily (and frequently) be transferred between different models. This method is then used to generate a large set of adversaries, based on which the effects of selected defense methods are experimentally assessed. At last, we introduce a novel, simple, yet effective approach to enhance the resilience of neural networks against adversaries and benchmark it against established defense methods. In contrast to the already existing methods, our proposed defense approach is much more efficient as it only requires a single additional forward-pass to achieve comparable performance results.
The Internet of Things enables interaction between IoT devices and users through the cloud. The cloud provides services such as account monitoring, device management, and device control. As the center of the IoT platform, the cloud provides services to IoT devices and IoT applications through APIs. Therefore, the permission verification of the API is essential. However, we found that some APIs are unverified, which allows unauthorized users to access cloud resources or control devices; it could threaten the security of devices and cloud. To check for unauthorized access to the API, we developed IoT-APIScanner, a framework to check the permission verification of the cloud API. Through observation, we found there is a large amount of interactive information between IoT application and cloud, which include the APIs and related parameters, so we can extract them by analyzing the code of the IoT application, and use this for mutating API test cases. Through these test cases, we can effectively check the permissions of the API. In our research, we extracted a total of 5 platform APIs. Among them, the proportion of APIs without permission verification reached 13.3%. Our research shows that attackers could use the API without permission verification to obtain user privacy or control of devices.
Context : Programmers frequently look for the code of previously solved problems that they can adapt for their own problem. Despite existing example code on the web, on sites like Stack Overflow, cryptographic Application Programming Interfaces (APIs) are commonly misused. There is little known about what makes examples helpful for developers in using crypto APIs. Analogical problem solving is a psychological theory that investigates how people use known solutions to solve new problems. There is evidence that the capacity to reason and solve novel problems a.k.a Fluid Intelligence (Gf) and structurally and procedurally similar solutions support problem solving. Aim: Our goal is to understand whether similarity and Gf also have an effect in the context of using cryptographic APIs with the help of code examples. Method : We conducted a controlled experiment with 76 student participants developing with or without procedurally similar examples, one of two Java crypto libraries and measured the Gf of the participants as well as the effect on usability (effectiveness, efficiency, satisfaction) and security bugs. Results: We observed a strong effect of code examples with a high procedural similarity on all dependent variables. Fluid intelligence Gf had no effect. It also made no difference which library the participants used. Conclusions: Example code must be more highly similar to a concrete solution, not very abstract and generic to have a positive effect in a development task.