Das, T., Eldosouky, A. R., Sengupta, S..
2020.
Think Smart, Play Dumb: Analyzing Deception in Hardware Trojan Detection Using Game Theory. 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–8.
In recent years, integrated circuits (ICs) have become significant for various industries and their security has been given greater priority, specifically in the supply chain. Budgetary constraints have compelled IC designers to offshore manufacturing to third-party companies. When the designer gets the manufactured ICs back, it is imperative to test for potential threats like hardware trojans (HT). In this paper, a novel multi-level game-theoretic framework is introduced to analyze the interactions between a malicious IC manufacturer and the tester. In particular, the game is formulated as a non-cooperative, zero-sum, repeated game using prospect theory (PT) that captures different players' rationalities under uncertainty. The repeated game is separated into a learning stage, in which the defender learns about the attacker's tendencies, and an actual game stage, where this learning is used. Experiments show great incentive for the attacker to deceive the defender about their actual rationality by "playing dumb" in the learning stage (deception). This scenario is captured using hypergame theory to model the attacker's view of the game. The optimal deception rationality of the attacker is analytically derived to maximize utility gain. For the defender, a first-step deception mitigation process is proposed to thwart the effects of deception. Simulation results show that the attacker can profit from the deception as it can successfully insert HTs in the manufactured ICs without being detected.
Kotra, A., Eldosouky, A., Sengupta, S..
2020.
Every Anonymization Begins with k: A Game-Theoretic Approach for Optimized k Selection in k-Anonymization. 2020 International Conference on Advances in Computing and Communication Engineering (ICACCE). :1–6.
Privacy preservation is one of the greatest concerns when data is shared between different organizations. On the one hand, releasing data for research purposes is inevitable. On the other hand, sharing this data can jeopardize users' privacy. An effective solution, for the sharing organizations, is to use anonymization techniques to hide the users' sensitive information. One of the most popular anonymization techniques is k-Anonymization in which any data record is indistinguishable from at least k-1 other records. However, one of the fundamental challenges in choosing the value of k is the trade-off between achieving a higher privacy and the information loss associated with the anonymization. In this paper, the problem of choosing the optimal anonymization level for k-anonymization, under possible attacks, is studied when multiple organizations share their data to a common platform. In particular, two common types of attacks are considered that can target the k-anonymization technique. To this end, a novel game-theoretic framework is proposed to model the interactions between the sharing organizations and the attacker. The problem is formulated as a static game and its different Nash equilibria solutions are analytically derived. Simulation results show that the proposed framework can significantly improve the utility of the sharing organizations through optimizing the choice of k value.
Xu, Z., Easwaran, A..
2020.
A Game-Theoretic Approach to Secure Estimation and Control for Cyber-Physical Systems with a Digital Twin. 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS). :20–29.
Cyber-Physical Systems (CPSs) play an increasingly significant role in many critical applications. These valuable applications attract various sophisticated attacks. This paper considers a stealthy estimation attack, which aims to modify the state estimation of the CPSs. The intelligent attackers can learn defense strategies and use clandestine attack strategies to avoid detection. To address the issue, we design a Chi-square detector in a Digital Twin (DT), which is an online digital model of the physical system. We use a Signaling Game with Evidence (SGE) to find the optimal attack and defense strategies. Our analytical results show that the proposed defense strategies can mitigate the impact of the attack on the physical estimation and guarantee the stability of the CPSs. Finally, we use an illustrative application to evaluate the performance of the proposed framework.
Liao, S., Wu, J., Li, J., Bashir, A. K..
2020.
Proof-of-Balance: Game-Theoretic Consensus for Controller Load Balancing of SDN. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :231–236.
Software Defined Networking (SDN) focus on the isolation of control plane and data plane, greatly enhancing the network's support for heterogeneity and flexibility. However, although the programmable network greatly improves the performance of all aspects of the network, flexible load balancing across controllers still challenges the current SDN architecture. Complex application scenarios lead to flexible and changeable communication requirements, making it difficult to guarantee the Quality of Service (QoS) for SDN users. To address this issue, this paper proposes a paradigm that uses blockchain to incentive safe load balancing for multiple controllers. We proposed a controller consortium blockchain for secure and efficient load balancing of multi-controllers, which includes a new cryptographic currency balance coin and a novel consensus mechanism Proof-of-Balance (PoB). In addition, we have designed a novel game theory-based incentive mechanism to incentive controllers with tight communication resources to offload tasks to idle controllers. The security analysis and performance simulation results indicate the superiority and effectiveness of the proposed scheme.
Solovey, R., Lavrova, D..
2020.
Game-Theoretic Approach to Self-Regulation of Dynamic Network Infrastructure to Protect Against Cyber Attacks. 2020 International Scientific and Technical Conference Modern Computer Network Technologies (MoNeTeC). :1–7.
The paper presents the concept of applying a game theory approach in infrastructure of wireless dynamic networks to counter computer attacks. The applying of this approach will allow to create mechanism for adaptive reconfiguration of network structure in the context of implementation various types of computer attacks and to provide continuous operation of network even in conditions of destructive information impacts.
Lakhdhar, Y., Rekhis, S., Sabir, E..
2020.
A Game Theoretic Approach For Deploying Forensic Ready Systems. 2020 International Conference on Software, Telecommunications and Computer Networks (SoftCOM). :1–6.
Cyber incidents are occurring every day using various attack strategies. Deploying security solutions with strong configurations will reduce the attack surface and improve the forensic readiness, but will increase the security overhead and cost. In contrast, using moderate or low security configurations will reduce that overhead, but will inevitably decrease the investigation readiness. To avoid the use of cost-prohibitive approaches in developing forensic-ready systems, we present in this paper a game theoretic approach for deploying an investigation-ready infrastructure. The proposed game is a non-cooperative two-player game between an adaptive cyber defender that uses a cognitive security solution to increase the investigation readiness and reduce the attackers' untraceability, and a cyber attacker that wants to execute non-provable attacks with a low cost. The cognitive security solution takes its strategic decision, mainly based on its ability to make forensic experts able to differentiate between provable identifiable, provable non-identifiable, and non-provable attack scenarios, starting from the expected evidences to be generated. We study the behavior of the two strategic players, looking for a mixed Nash equilibrium during competition and computing the probabilities of attacking and defending. A simulation is conducted to prove the efficiency of the proposed model in terms of the mean percentage of gained security cost, the number of stepping stones that an attacker creates and the rate of defender false decisions compared to two different approaches.
Halabi, T., Wahab, O. A., Zulkernine, M..
2020.
A Game-Theoretic Approach for Distributed Attack Mitigation in Intelligent Transportation Systems. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1–6.
Intelligent Transportation Systems (ITS) play a vital role in the development of smart cities. They enable various road safety and efficiency applications such as optimized traffic management, collision avoidance, and pollution control through the collection and evaluation of traffic data from Road Side Units (RSUs) and connected vehicles in real time. However, these systems are highly vulnerable to data corruption attacks which can seriously influence their decision-making abilities. Traditional attack detection schemes do not account for attackers' sophisticated and evolving strategies and ignore the ITS's constraints on security resources. In this paper, we devise a security game model that allows the defense mechanism deployed in the ITS to optimize the distribution of available resources for attack detection while considering mixed attack strategies, according to which the attacker targets multiple RSUs in a distributed fashion. In our security game, the utility of the ITS is quantified in terms of detection rate, attack damage, and the relevance of the information transmitted by the RSUs. The proposed approach will enable the ITS to mitigate the impact of attacks and increase its resiliency. The results show that our approach reduces the attack impact by at least 20% compared to the one that fairly allocates security resources to RSUs indifferently to attackers' strategies.
Dai, Q., Shi, L..
2020.
A Game-Theoretic Analysis of Cyber Attack-Mitigation in Centralized Feeder Automation System. 2020 IEEE Power Energy Society General Meeting (PESGM). :1–5.
The intelligent electronic devices widely deployed across the distribution network are inevitably making the feeder automation (FA) system more vulnerable to cyber-attacks, which would lead to disastrous socio-economic impacts. This paper proposes a three-stage game-theoretic framework that the defender allocates limited security resources to minimize the economic impacts on FA system while the attacker deploys limited attack resources to maximize the corresponding impacts. Meanwhile, the probability of successful attack is calculated based on the Bayesian attack graph, and a fault-tolerant location technique for centralized FA system is elaborately considered during analysis. The proposed game-theoretic framework is converted into a two-level zero-sum game model and solved by the particle swarm optimization (PSO) combined with a generalized reduced gradient algorithm. Finally, the proposed model is validated on distribution network for RBTS bus 2.