Biblio
Intelligent networked vehicles are rapidly developing in intelligence and networking. The communication architecture is becoming more complex, external interfaces are richer, and data types are more complex. Different from the information security of the traditional Internet of Things, the scenarios that need to be met for the security of the Internet of Vehicles are more diverse and the security needs to be more stable. Based on the security technology of traditional Internet of Things, password application is the main protection method to ensure the privacy and non-repudiation of data communication. This article mainly elaborates the application of security protection methods using password-related protection technologies in car-side scenarios and summarizes the security protection recommendations of contemporary connected vehicles in combination with the secure communication architecture of the Internet of Vehicles.
Improved safety, high mobility and environmental concerns in transportation systems across the world and the corresponding developments in information and communication technologies continue to drive attention towards Intelligent Transportation Systems (ITS). This is evident in advanced driver-assistance systems such as lane departure warning, adaptive cruise control and collision avoidance. However, in connected and autonomous vehicles, the efficient functionality of these applications depends largely on the ability of a vehicle to accurately predict it operating parameters such as location and speed. The ability to predict the immediate future/next location (or speed) of a vehicle or its ability to predict neighbors help in guaranteeing integrity, availability and accountability, thus boosting safety and resiliency of the Vehicular Network for Mobile Cyber Physical Systems (VCPS). In this paper, we proposed a secure movement-prediction for connected vehicles by using Kalman filter. Specifically, Kalman filter predicts the locations and speeds of individual vehicles with reference to already observed and known information such posted legal speed limit, geographic/road location, direction etc. The aim is to achieve resilience through the predicted and exchanged information between connected moving vehicles in an adaptive manner. By being able to predict their future locations, the following vehicle is able to adjust its position more accurately to avoid collision and to ensure optimal information exchange among vehicles.
The use of Electric Vehicle (EV) is growing rapidly due to its environmental benefits. However, the major problem of these vehicles is their limited battery, the lack of charging stations and the re-charge time. Introducing Information and Communication Technologies, in the field of EV, will improve energy efficiency, energy consumption predictions, availability of charging stations, etc. The Internet of Vehicles based only on Electric Vehicles (IoEV) is a complex system. It is composed of vehicles, humans, sensors, road infrastructure and charging stations. All these entities communicate using several communication technologies (ZigBee, 802.11p, cellular networks, etc). IoEV is therefore vulnerable to significant attacks such as DoS, false data injection, modification. Hence, security is a crucial factor for the development and the wide deployment of Internet of Electric Vehicles (IoEV). In this paper, we present an overview of security issues of the IoEV architecture and we highlight open issues that make the IoEV security a challenging research area in the future.
The Internet of Vehicles (IoV) will connect not only mobile devices with vehicles, but it will also connect vehicles with each other, and with smart offices, buildings, homes, theaters, shopping malls, and cities. The IoV facilitates optimal and reliable communication services to connected vehicles in smart cities. The backbone of connected vehicles communication is the critical V2X infrastructures deployment. The spectrum utilization depends on the demand by the end users and the development of infrastructure that includes efficient automation techniques together with the Internet of Things (IoT). The infrastructure enables us to build smart environments for spectrum utilization, which we refer to as Smart Spectrum Utilization (SSU). This paper presents an integrated system consisting of SSU with IoV. However, the tasks of securing IoV and protecting it from cyber attacks present considerable challenges. This paper introduces an IoV security system using deep learning approach to develop secure applications and reliable services. Deep learning composed of unsupervised learning and supervised learning, could optimize the IoV security system. The deep learning methodology is applied to monitor security threats. Results from simulations show that the monitoring accuracy of the proposed security system is superior to that of the traditional system.
Significant developments have taken place over the past few years in the area of vehicular communication systems in the ITS environment. It is vital that, in these environments, security is considered in design and implementation since compromised vulnerabilities in one vehicle can be propagated to other vehicles, especially given that V2X communication is through an ad-hoc type network. Recently, many standardisation organisations have been working on creating international standards related to vehicular communication security and the so-called Internet of Vehicles (IoV). This paper presents a discussion of current V2X communications cyber security issues and standardisation approaches being considered by standardisation bodies such as the ISO, the ITU, the IEEE, and the ETSI.
Vehicles are becoming increasingly connected to the outside world. We can connect our devices to the vehicle's infotainment system and internet is being added as a functionality. Therefore, security is a major concern as the attack surface has become much larger than before. Consequently, attackers are creating malware that can infect vehicles and perform life-threatening activities. For example, a malware can compromise vehicle ECUs and cause unexpected consequences. Hence, ensuring the security of connected vehicle software and networks is extremely important to gain consumer confidence and foster the growth of this emerging market. In this paper, we propose a characterization of vehicle malware and a security architecture to protect vehicle from these malware. The architecture uses multiple computational platforms and makes use of the virtualization technique to limit the attack surface. There is a real-time operating system to control critical vehicle functionalities and multiple other operating systems for non-critical functionalities (infotainment, telematics, etc.). The security architecture also describes groups of components for the operating systems to prevent malicious activities and perform policing (monitor, detect, and control). We believe this work will help automakers guard their systems against malware and provide a clear guideline for future research.
In this paper we consider connected and autonomous vehicles (CAV) in a traffic network as moving waves defined by their frequency and phase. This outlook allows us to develop a multi-layer decentralized control strategy that achieves the following desirable behaviors: (1) safe spacing between vehicles traveling down the same road, (2) coordinated safe crossing at intersections of conflicting flows, (3) smooth velocity profiles when traversing adjacent intersections. The approach consist of using the Kuramoto equation to synchronize the phase and frequency of agents in the network. The output of this layer serves as the reference trajectory for a back-stepping controller that interfaces the first-order dynamics of the phase-domain layer and the second order dynamics of the vehicle. We show the performance of the strategy for a single intersection and a small urban grid network. The literature has focused on solving the intersection coordination problem in both a centralized and decentralized manner. Some authors have even used the Kuramoto equation to achieve synchronization of traffic lights. Our proposed strategy falls in the rubric of a decentralized approach, but unlike previous work, it defines the vehicles as the oscillating agents, and leverages their inter-connectivity to achieve network-wide synchronization. In this way, it combines the benefits of coordinating the crossing of vehicles at individual intersections and synchronizing flow from adjacent junctions.