Biblio
The usage of robot is rapidly growth in our society. The communication link and applications connect the robots to their clients or users. This communication link and applications are normally connected through some kind of network connections. This network system is amenable of being attached and vulnerable to the security threats. It is a critical part for ensuring security and privacy for robotic platforms. The paper, also discusses about several cyber-physical security threats that are only for robotic platforms. The peer to peer applications use in the robotic platforms for threats target integrity, availability and confidential security purposes. A Remote Administration Tool (RAT) was introduced for specific security attacks. An impact oriented process was performed for analyzing the assessment outcomes of the attacks. Tests and experiments of attacks were performed in simulation environment which was based on Gazbo Turtlebot simulator and physically on the robot. A software tool was used for simulating, debugging and experimenting on ROS platform. Integrity attacks performed for modifying commands and manipulated the robot behavior. Availability attacks were affected for Denial-of-Service (DoS) and the robot was not listened to Turtlebot commands. Integrity and availability attacks resulted sensitive information on the robot.
Nowadays, mobile devices have become one of the most popular instruments used by a person on its regular life, mainly due to the importance of their applications. In that context, mobile devices store user's personal information and even more data, becoming a personal tracker for daily activities that provides important information about the user. Derived from this gathering of information, many tools are available to use on mobile devices, with the restrain that each tool only provides isolated information about a specific application or activity. Therefore, the present work proposes a tool that allows investigators to obtain a complete report and timeline of the activities that were performed on the device. This report incorporates the information provided by many sources into a unique set of data. Also, by means of an example, it is presented the operation of the solution, which shows the feasibility in the use of this tool and shows the way in which investigators have to apply the tool.
The era of information technology has, unfortunately, contributed to the tremendous rise in the number of criminal activities. However, digital artifacts can be utilized in convicting cybercriminal and exposing their activities. The digital forensics science concerns about all aspects related to cybercrimes. It seeks digital evidence by following standard methodologies to be admitted in court rooms. This paper concerns about memory forensics for the unique artifacts it holds. Memory contains information about the current state of systems and applications. Moreover, an application's data explains how a criminal has been interacting the application just before the memory is acquired. Memory forensics at the application level is currently random and cumbersome. Targeting specific applications is what forensic researchers and practitioner are currently striving to provide. This paper suggests a general solution to investigate any application. Our solution aims to utilize an application's data structures and variables' information in the investigation process. This is because an application's data has to be stored and retrieved in the means of variables. Data structures and variables' information can be generated by compilers for debugging purposes. We show that an application's information is a valuable resource to the investigator.
In this paper, we present an extensive evaluation of face recognition and verification approaches performed by the European COST Action MULTI-modal Imaging of FOREnsic SciEnce Evidence (MULTI-FORESEE). The aim of the study is to evaluate various face recognition and verification methods, ranging from methods based on facial landmarks to state-of-the-art off-the-shelf pre-trained Convolutional Neural Networks (CNN), as well as CNN models directly trained for the task at hand. To fulfill this objective, we carefully designed and implemented a realistic data acquisition process, that corresponds to a typical face verification setup, and collected a challenging dataset to evaluate the real world performance of the aforementioned methods. Apart from verifying the effectiveness of deep learning approaches in a specific scenario, several important limitations are identified and discussed through the paper, providing valuable insight for future research directions in the field.
The world is continuously developing, and people's needs are increasing as well; so too are the number of thieves increasing, especially electronic thieves. For that reason, companies and individuals are always searching for experts who will protect them from thieves, and these experts are called digital investigators. Digital forensics has a number of branches and different parts, and image forensics is one of them. The budget for the images branch goes up every day in response to the need. In this paper we offer some information about images and image forensics, image components and how they are stored in digital devices and how they can be deleted and recovered. We offer general information about digital forensics, focusing on image forensics.
Bitcoin is popular not only with consumers, but also with cybercriminals (e.g., in ransomware and online extortion, and commercial online child exploitation). Given the potential of Bitcoin to be involved in a criminal investigation, the need to have an up-to-date and in-depth understanding on the forensic acquisition and analysis of Bitcoins is crucial. However, there has been limited forensic research of Bitcoin in the literature. The general focus of existing research is on postmortem analysis of specific locations (e.g. wallets on mobile devices), rather than a forensic approach that combines live data forensics and postmortem analysis to facilitate the identification, acquisition, and analysis of forensic traces relating to the use of Bitcoins on a system. Hence, the latter is the focus of this paper where we present an open source tool for live forensic and postmortem analysing automatically. Using this open source tool, we describe a list of target artifacts that can be obtained from a forensic investigation of popular Bitcoin clients and Web Wallets on different web browsers installed on Windows 7 and Windows 10 platforms.
Software defined networks (SDNs) represent new centralized network architecture that facilitates the deployment of services, applications and policies from the upper layers, relatively the management and control planes to the lower layers the data plane and the end user layer. SDNs give several advantages in terms of agility and flexibility, especially for mobile operators and for internet service providers. However, the implementation of these types of networks faces several technical challenges and security issues. In this paper we will focus on SDN's security issues and we will propose the implementation of a centralized security layer named AM-SecP. The proposed layer is linked vertically to all SDN layers which ease packets inspections and detecting intrusions. The purpose of this architecture is to stop and to detect malware infections, we do this by denying services and tunneling attacks without encumbering the networks by expensive operations and high calculation cost. The implementation of the proposed framework will be also made to demonstrate his feasibility and robustness.
This paper presents PSO, an ontological framework and a methodology for improving physical security and insider threat detection. PSO can facilitate forensic data analysis and proactively mitigate insider threats by leveraging rule-based anomaly detection. In all too many cases, rule-based anomaly detection can detect employee deviations from organizational security policies. In addition, PSO can be considered a security provenance solution because of its ability to fully reconstruct attack patterns. Provenance graphs can be further analyzed to identify deceptive actions and overcome analytical mistakes that can result in bad decision-making, such as false attribution. Moreover, the information can be used to enrich the available intelligence (about intrusion attempts) that can form use cases to detect and remediate limitations in the system, such as loosely-coupled provenance graphs that in many cases indicate weaknesses in the physical security architecture. Ultimately, validation of the framework through use cases demonstrates and proves that PS0 can improve an organization's security posture in terms of physical security and insider threat detection.
The pervasive use of databases for the storage of critical and sensitive information in many organizations has led to an increase in the rate at which databases are exploited in computer crimes. While there are several techniques and tools available for database forensic analysis, such tools usually assume an apriori database preparation, such as relying on tamper-detection software to already be in place and the use of detailed logging. Further, such tools are built-in and thus can be compromised or corrupted along with the database itself. In practice, investigators need forensic and security audit tools that work on poorlyconfigured systems and make no assumptions about the extent of damage or malicious hacking in a database.In this paper, we present our database forensics methods, which are capable of examining database content from a storage (disk or RAM) image without using any log or file system metadata. We describe how these methods can be used to detect security breaches in an untrusted environment where the security threat arose from a privileged user (or someone who has obtained such privileges). Finally, we argue that a comprehensive and independent audit framework is necessary in order to detect and counteract threats in an environment where the security breach originates from an administrator (either at database or operating system level).
T138 combat cyber crimes, electronic evidence have played an increasing role, but in judicial practice the electronic evidence were not highly applied because of the natural contradiction between the epistemic uncertainty of electronic evidence and the principle of discretionary evidence of judge in the court. in this paper, we put forward a layer-built method to analyze the relevancy of electronic evidence, and discussed their analytical process combined with the case study. The initial practice shows the model is feasible and has a consulting value in analyzing the relevancy of electronic evidence.
In recent decades, a significant research effort has been devoted to the development of forensic tools for retrieving information and detecting possible tampering of multimedia documents. A number of counter-forensic tools have been developed as well in order to impede a correct analysis. Such tools are often very effective due to the vulnerability of multimedia forensics tools, which are not designed to work in an adversarial environment. In this scenario, developing forensic techniques capable of granting good performance even in the presence of an adversary aiming at impeding the forensic analysis, is becoming a necessity. This turns out to be a difficult task, given the weakness of the traces the forensic analysis usually relies on. The goal of this paper is to provide an overview of the advances made over the last decade in the field of adversarial multimedia forensics. We first consider the view points of the forensic analyst and the attacker independently, then we review some of the attempts made to simultaneously take into account both perspectives by resorting to game theory. Eventually, we discuss the hottest open problems and outline possible paths for future research.
At the first Information Hiding Workshop in 1996 we tried to clarify the models and assumptions behind information hiding. We agreed the terminology of cover text and stego text against a background of the game proposed by our keynote speaker Gus Simmons: that Alice and Bob are in jail and wish to hatch an escape plan without the fact of their communication coming to the attention of the warden, Willie. Since then there have been significant strides in developing technical mechanisms for steganography and steganalysis, with new techniques from machine learning providing ever more powerful tools for the analyst, such as the ensemble classifier. There have also been a number of conceptual advances, such as the square root law and effective key length. But there always remains the question whether we are using the right security metrics for the application. In this talk I plan to take a step backwards and look at the systems context. When can stegosystems actually be used? The deployment history is patchy, with one being Trucrypt's hidden volumes, inspired by the steganographic file system. Image forensics also find some use, and may be helpful against some adversarial machine learning attacks (or at least help us understand them). But there are other contexts in which patterns of activity have to be hidden for that activity to be effective. I will discuss a number of examples starting with deception mechanisms such as honeypots, Tor bridges and pluggable transports, which merely have to evade detection for a while; then moving on to the more challenging task of designing deniability mechanisms, from leaking secrets to a newspaper through bitcoin mixes, which have to withstand forensic examination once the participants come under suspicion. We already know that, at the system level, anonymity is hard. However the increasing quantity and richness of the data available to opponents may move a number of applications from the deception category to that of deniability. To pick up on our model of 20 years ago, Willie might not just put Alice and Bob in solitary confinement if he finds them communicating, but torture them or even execute them. Changing threat models are historically one of the great disruptive forces in security engineering. This leads me to suspect that a useful research area may be the intersection of deception and forensics, and how information hiding systems can be designed in anticipation of richer and more complex threat models. The ever-more-aggressive censorship systems deployed in some parts of the world also raise the possibility of using information hiding techniques in censorship circumvention. As an example of recent practical work, I will discuss Covertmark, a toolkit for testing pluggable transports that was partly inspired by Stirmark, a tool we presented at the second Information Hiding Workshop twenty years ago.