Visible to the public Biblio

Found 112 results

Filters: Keyword is Forensics  [Clear All Filters]
2022-04-25
Nawaz, Alia, Naeem, Tariq, Tayyab, Muhammad.  2021.  Application Profiling From Encrypted Traffic. 2021 International Conference on Cyber Warfare and Security (ICCWS). :1–7.
Everyday millions of people use Internet for various purposes including information access, communication, business, education, entertainment and more. As a result, huge amount of information is exchanged between billions of connected devices. This information can be encapsulated in different types of data packets. This information is also referred to as network traffic. The traffic analysis is a challenging task when the traffic is encrypted and the contents are not readable. So complex algorithms required to deduce the information and form patterns for traffic analysis. Many of currently available techniques rely on application specific attribute analysis, deep packet inspection (DPI) or content-based analysis that become ineffective on encrypted traffic. The article will focused on analysis techniques for encrypted traffic that are adaptive to address the evolving nature and increasing volume of network traffic. The proposed solution solution is less dependent on application and protocol specific parameters so that it can adapt to new types of applications and protocols. Our results shows that processing required for traffic analysis need to be in acceptable limits to ensure applicability in real-time applications without compromising performance.
2022-04-19
Srinivasan, Sudarshan, Begoli, Edmon, Mahbub, Maria, Knight, Kathryn.  2021.  Nomen Est Omen - The Role of Signatures in Ascribing Email Author Identity with Transformer Neural Networks. 2021 IEEE Security and Privacy Workshops (SPW). :291–297.
Authorship attribution, an NLP problem where anonymous text is matched to its author, has important, cross-disciplinary applications, particularly those concerning cyber-defense. Our research examines the degree of sensitivity that attention-based models have to adversarial perturbations. We ask, what is the minimal amount of change necessary to maximally confuse a transformer model? In our investigation we examine a balanced subset of emails from the Enron email dataset, calculating the performance of our model before and after email signatures have been perturbed. Results show that the model's performance changed significantly in the absence of a signature, indicating the importance of email signatures in email authorship detection. Furthermore, we show that these models rely on signatures for shorter emails much more than for longer emails. We also indicate that additional research is necessary to investigate stylometric features and adversarial training to further improve classification model robustness.
2022-03-23
Matellán, Vicente, Rodríguez-Lera, Francisco-J., Guerrero-Higueras, Ángel-M., Rico, Francisco-Martín, Ginés, Jonatan.  2021.  The Role of Cybersecurity and HPC in the Explainability of Autonomous Robots Behavior. 2021 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO). :1–5.
Autonomous robots are increasingly widespread in our society. These robots need to be safe, reliable, respectful of privacy, not manipulable by external agents, and capable of offering explanations of their behavior in order to be accountable and acceptable in our societies. Companies offering robotic services will need to provide mechanisms to address these issues using High Performance Computing (HPC) facilities, where logs and off-line forensic analysis could be addressed if required, but these solutions are still not available in software development frameworks for robots. The aim of this paper is to discuss the implications and interactions among cybersecurity, safety, and explainability with the goal of making autonomous robots more trustworthy.
2022-02-25
Sadineni, Lakshminarayana, Pilli, Emmanuel S., Battula, Ramesh Babu.  2021.  Ready-IoT: A Novel Forensic Readiness Model for Internet of Things. 2021 IEEE 7th World Forum on Internet of Things (WF-IoT). :89–94.
Internet of Things (IoT) networks are often attacked to compromise the security and privacy of application data and disrupt the services offered by them. The attacks are being launched at different layers of IoT protocol stack by exploiting their inherent weaknesses. Forensic investigations need substantial artifacts and datasets to support the decisions taken during analysis and while attributing the attack to the adversary. Network provenance plays a crucial role in establishing the relationships between network entities. Hence IoT networks can be made forensic ready so that network provenance may be collected to help in constructing these artifacts. The paper proposes Ready-IoT, a novel forensic readiness model for IoT environment to collect provenance from the network which comprises of both network parameters and traffic. A link layer dataset, Link-IoT Dataset is also generated by querying provenance graphs. Finally, Link-IoT dataset is compared with other IoT datasets to draw a line of difference and applicability to IoT environments. We believe that the proposed features have the potential to detect the attacks performed on the IoT network.
Patil, Sonali, Kadam, Sarika, Katti, Jayashree.  2021.  Security Enhancement of Forensic Evidences Using Blockchain. 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV). :263–268.

In today's digital era, data is most important in every phase of work. The storage and processing on data with security is the need of each and every application field. Data need to be tamper resistant due to possibility of alteration. Data can be represented and stored in heterogeneous format. There are chances of attack on information which is vital for particular organization. With rapid increase in cyber crime, attackers behave maliciously to alter those data. But it is having great impact on forensic evidences which is required for provenance. Therefore, it is required to maintain the reliability and provenance of digital evidences as it travels through various stages during forensic investigation. In this approach, there is a forensic chain in which generated report passes through various levels or intermediaries such as pathology laboratory, doctor, police department etc. To build the transparent system with immutability of forensic evidences, blockchain technology is more suitable. Blockchain technology provides the transfer of assets or evidence reports in transparent environment without central authority. In this paper blockchain based secure system for forensic evidences is proposed. The proposed system is implemented on Ethereum platform. The tampering of forensic evidence can be easily traced at any stage by anyone in the forensic chain. The security enhancement of forensic evidences is achieved through implementation on Ethereum platform with high integrity, traceability and immutability.

Phua, Thye Way, Patros, Panos, Kumar, Vimal.  2021.  Towards Embedding Data Provenance in Files. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :1319–1325.
Data provenance (keeping track of who did what, where, when and how) boasts of various attractive use cases for distributed systems, such as intrusion detection, forensic analysis and secure information dependability. This potential, however, can only be realized if provenance is accessible by its primary stakeholders: the end-users. Existing provenance systems are designed in a `all-or-nothing' fashion, making provenance inaccessible, difficult to extract and crucially, not controlled by its key stakeholders. To mitigate this, we propose that provenance be separated into system, data-specific and file-metadata provenance. Furthermore, we expand data-specific provenance as changes at a fine-grain level, or provenance-per-change, that is recorded alongside its source. We show that with the use of delta-encoding, provenance-per-change is viable, asserting our proposed architecture to be effectively realizable.
2022-02-24
Lin, Junxiong, Xu, Yajing, Lu, Zhihui, Wu, Jie, Ye, Houhao, Huang, Wenbing, Chen, Xuzhao.  2021.  A Blockchain-Based Evidential and Secure Bulk-Commodity Supervisory System. 2021 International Conference on Service Science (ICSS). :1–6.
In recent years, the commodities industry has grown rapidly under the stimulus of domestic demand and the expansion of cross-border trade. It has also been combined with the rapid development of e-commerce technology in the same period to form a flexible and efficient e-commerce system for bulk commodities. However, the hasty combination of both has inspired a lack of effective regulatory measures in the bulk industry, leading to constant industry chaos. Among them, the problem of lagging evidence in regulatory platforms is particularly prominent. Based on this, we design a blockchain-based evidential and secure bulk-commodity supervisory system (abbr. BeBus). Setting different privacy protection policies for each participant in the system, the solution ensures effective forensics and tamper-proof evidence to meet the needs of the bulk business scenario.
2022-02-07
Lakhdhar, Yosra, Rekhis, Slim.  2021.  Machine Learning Based Approach for the Automated Mapping of Discovered Vulnerabilities to Adversial Tactics. 2021 IEEE Security and Privacy Workshops (SPW). :309–317.
To defend networks against security attacks, cyber defenders have to identify vulnerabilities that could be exploited by an attacker and fix them. However, vulnerabilities are constantly evolving and their number is rising. In addition, the resources required (i.e., time and cost) to patch all the identified vulnerabilities and update the affected assets are not always affordable. For these reasons, the defender needs to have a set of metrics that could be used to automatically map new discovered vulnerabilities to potential attack tactics. Using such a mapping to attack tactics, will allow security solutions to better respond inline to any vulnerabilities exploitation tentatives, by selecting and prioritizing suitable response strategy. In this work, we provide a multilabel classification approach to automatically map a detected vulnerability to the MITRE Adversarial Tactics that could be used by the attacker. The proposed approach will help cyber defenders to prioritize their defense strategies, ensure a rapid and efficient investigation process, and well manage new detected vulnerabilities. We evaluate a set of machine learning algorithms (BinaryRelevance, LabelPowerset, ClassifierChains, MLKNN, BRKNN, RAkELd, NLSP, and Neural Networks) and found out that ClassifierChains with RandomForest classifier is the best method in our experiment.
2022-01-31
Mani, Santosh, Nene, Manisha J.  2021.  Preventing Distributed Denial of Service Attacks in Software Defined Mesh Networks. 2021 International Conference on Intelligent Technologies (CONIT). :1–7.
Mesh topology networks provide Network security in the form of redundancy of communication links. But redundancy also contributes to complexity in configuration and subsequent troubleshooting. Mesh topology deployed in Critical networks like Backbone Networks (used in Cloud Computing) deploy the Mesh topology provides additional security in terms of redundancy to ensure availability of services. One amongst most prominent attacks is Distributed Denial of Service attacks which cause an immense amount of loss of data as well as monetary losses to service providers. This paper proposes a method by which using SDN capabilities and sFlow-RT application, Distributed Denial of Service (DDoS) attacks is detected and consequently mitigated by using REST API to implement Policy Based Flow Management (PBFM) through the SDN Controller which will help in ensuring uninterrupted services in scenarios of such attacks and also further simply and enhance the management of Mesh architecture-based networks.
Wang, Xiying, Ni, Rongrong, Li, Wenjie, Zhao, Yao.  2021.  Adversarial Attack on Fake-Faces Detectors Under White and Black Box Scenarios. 2021 IEEE International Conference on Image Processing (ICIP). :3627–3631.
Generative Adversarial Network (GAN) models have been widely used in various fields. More recently, styleGAN and styleGAN2 have been developed to synthesize faces that are indistinguishable to the human eyes, which could pose a threat to public security. But latest work has shown that it is possible to identify fakes using powerful CNN networks as classifiers. However, the reliability of these techniques is unknown. Therefore, in this paper we focus on the generation of content-preserving images from fake faces to spoof classifiers. Two GAN-based frameworks are proposed to achieve the goal in the white-box and black-box. For the white-box, a network without up/down sampling is proposed to generate face images to confuse the classifier. In the black-box scenario (where the classifier is unknown), real data is introduced as a guidance for GAN structure to make it adversarial, and a Real Extractor as an auxiliary network to constrain the feature distance between the generated images and the real data to enhance the adversarial capability. Experimental results show that the proposed method effectively reduces the detection accuracy of forensic models with good transferability.
2022-01-25
Saleem, Summra, Dilawari, Aniqa, Khan, Usman Ghani.  2021.  Spoofed Voice Detection using Dense Features of STFT and MDCT Spectrograms. 2021 International Conference on Artificial Intelligence (ICAI). :56–61.
Attestation of audio signals for recognition of forgery in voice is challenging task. In this research work, a deep convolutional neural network (CNN) is utilized to detect audio operations i.e. pitch shifted and amplitude varied signals. Short-time Fourier transform (STFT) and Modified Discrete Cosine Transform (MDCT) features are chosen for audio processing and their plotted patterns are fed to CNN. Experimental results show that our model can successfully distinguish tampered signals to facilitate the audio authentication on TIMIT dataset. Proposed CNN architecture can distinguish spoofed voices of shifting pitch with accuracy of 97.55% and of varying amplitude with accuracy of 98.85%.
2021-12-20
D'Agostino, Jack, Kul, Gokhan.  2021.  Toward Pinpointing Data Leakage from Advanced Persistent Threats. 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :157–162.
Advanced Persistent Threats (APT) consist of most skillful hackers who employ sophisticated techniques to stealthily gain unauthorized access to private networks and exfiltrate sensitive data. When their existence is discovered, organizations - if they can sustain business continuity - mostly have to perform forensics activities to assess the damage of the attack and discover the extent of sensitive data leakage. In this paper, we construct a novel framework to pinpoint sensitive data that may have been leaked in such an attack. Our framework consists of creating baseline fingerprints for each workstation for setting normal activity, and we consider the change in the behavior of the network overall. We compare the accused fingerprint with sensitive database information by utilizing both Levenstein distance and TF-IDF/cosine similarity resulting in a similarity percentage. This allows us to pinpoint what part of data was exfiltrated by the perpetrators, where in the network the data originated, and if that data is sensitive to the private company's network. We then perform feasibility experiments to show that even these simple methods are feasible to run on a network representative of a mid-size business.
2021-09-21
Vaseer, Gurveen.  2020.  Multi-Attack Detection Using Forensics and Neural Network Based Prevention for Secure MANETs. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.
This paper presents Forensic methods for detection and prevention of multiple attacks along with neural networks like Denial-of-Service (DoS), probe, vampire, and User-to-Root (U2R) attacks, in a Mobile Ad hoc Network (MANET). We accomplish attacker(s) detection and prevention percentage upto 99% in varied node density scenarios 50/100/150.
2021-05-13
Zhang, Mingyue, Zhou, Junlong, Cao, Kun, Hu, Shiyan.  2020.  Trusted Anonymous Authentication For Vehicular Cyber-Physical Systems. 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :37—44.
In vehicular cyber-physical systems, the mounted cameras on the vehicles, together with the fixed roadside cameras, can produce pictorial data for multiple purposes. In this process, ensuring the security and privacy of vehicles while guaranteeing efficient data transmission among vehicles is critical. This motivates us to propose a trusted anonymous authentication scheme for vehicular cyber-physical systems and Internet-of-Things. Our scheme is designed based on a three-tier architecture which contains cloud layer, fog layer, and user layer. It utilizes bilinear-free certificateless signcryption to realize a secure and trusted anonymous authentication efficiently. We verify its effectiveness through theoretical analyses in terms of correctness, security, and efficiency. Furthermore, our simulation results demonstrate that the communication overhead, the computation overhead, and the packet loss rate of the proposed scheme are significantly better than those of the state-of-the-art techniques. Particularly, the proposed scheme can speed up the computation process at least 10× compared to all the state-of-the-art approaches.
2021-05-05
Tabiban, Azadeh, Jarraya, Yosr, Zhang, Mengyuan, Pourzandi, Makan, Wang, Lingyu, Debbabi, Mourad.  2020.  Catching Falling Dominoes: Cloud Management-Level Provenance Analysis with Application to OpenStack. 2020 IEEE Conference on Communications and Network Security (CNS). :1—9.

The dynamicity and complexity of clouds highlight the importance of automated root cause analysis solutions for explaining what might have caused a security incident. Most existing works focus on either locating malfunctioning clouds components, e.g., switches, or tracing changes at lower abstraction levels, e.g., system calls. On the other hand, a management-level solution can provide a big picture about the root cause in a more scalable manner. In this paper, we propose DOMINOCATCHER, a novel provenance-based solution for explaining the root cause of security incidents in terms of management operations in clouds. Specifically, we first define our provenance model to capture the interdependencies between cloud management operations, virtual resources and inputs. Based on this model, we design a framework to intercept cloud management operations and to extract and prune provenance metadata. We implement DOMINOCATCHER on OpenStack platform as an attached middleware and validate its effectiveness using security incidents based on real-world attacks. We also evaluate the performance through experiments on our testbed, and the results demonstrate that DOMINOCATCHER incurs insignificant overhead and is scalable for clouds.

2021-04-08
Zhang, J., Liao, Y., Zhu, X., Wang, H., Ding, J..  2020.  A Deep Learning Approach in the Discrete Cosine Transform Domain to Median Filtering Forensics. IEEE Signal Processing Letters. 27:276—280.
This letter presents a novel median filtering forensics approach, based on a convolutional neural network (CNN) with an adaptive filtering layer (AFL), which is built in the discrete cosine transform (DCT) domain. Using the proposed AFL, the CNN can determine the main frequency range closely related with the operational traces. Then, to automatically learn the multi-scale manipulation features, a multi-scale convolutional block is developed, exploring a new multi-scale feature fusion strategy based on the maxout function. The resultant features are further processed by a convolutional stream with pooling and batch normalization operations, and finally fed into the classification layer with the Softmax function. Experimental results show that our proposed approach is able to accurately detect the median filtering manipulation and outperforms the state-of-the-art schemes, especially in the scenarios of low image resolution and serious compression loss.
Mayer, O., Stamm, M. C..  2020.  Forensic Similarity for Digital Images. IEEE Transactions on Information Forensics and Security. 15:1331—1346.
In this paper, we introduce a new digital image forensics approach called forensic similarity, which determines whether two image patches contain the same forensic trace or different forensic traces. One benefit of this approach is that prior knowledge, e.g., training samples, of a forensic trace is not required to make a forensic similarity decision on it in the future. To do this, we propose a two-part deep-learning system composed of a convolutional neural network-based feature extractor and a three-layer neural network, called the similarity network. This system maps the pairs of image patches to a score indicating whether they contain the same or different forensic traces. We evaluated the system accuracy of determining whether two image patches were captured by the same or different camera model and manipulated by the same or a different editing operation and the same or a different manipulation parameter, given a particular editing operation. Experiments demonstrate applicability to a variety of forensic traces and importantly show efficacy on “unknown” forensic traces that were not used to train the system. Experiments also show that the proposed system significantly improves upon prior art, reducing error rates by more than half. Furthermore, we demonstrated the utility of the forensic similarity approach in two practical applications: forgery detection and localization, and database consistency verification.
Guerrini, F., Dalai, M., Leonardi, R..  2020.  Minimal Information Exchange for Secure Image Hash-Based Geometric Transformations Estimation. IEEE Transactions on Information Forensics and Security. 15:3482—3496.
Signal processing applications dealing with secure transmission are enjoying increasing attention lately. This paper provides some theoretical insights as well as a practical solution for transmitting a hash of an image to a central server to be compared with a reference image. The proposed solution employs a rigid image registration technique viewed in a distributed source coding perspective. In essence, it embodies a phase encoding framework to let the decoder estimate the transformation parameters using a very modest amount of information about the original image. The problem is first cast in an ideal setting and then it is solved in a realistic scenario, giving more prominence to low computational complexity in both the transmitter and receiver, minimal hash size, and hash security. Satisfactory experimental results are reported on a standard images set.
Zheng, Y., Cao, Y., Chang, C..  2020.  A PUF-Based Data-Device Hash for Tampered Image Detection and Source Camera Identification. IEEE Transactions on Information Forensics and Security. 15:620—634.
With the increasing prevalent of digital devices and their abuse for digital content creation, forgeries of digital images and video footage are more rampant than ever. Digital forensics is challenged into seeking advanced technologies for forgery content detection and acquisition device identification. Unfortunately, existing solutions that address image tampering problems fail to identify the device that produces the images or footage while techniques that can identify the camera is incapable of locating the tampered content of its captured images. In this paper, a new perceptual data-device hash is proposed to locate maliciously tampered image regions and identify the source camera of the received image data as a non-repudiable attestation in digital forensics. The presented image may have been either tampered or gone through benign content preserving geometric transforms or image processing operations. The proposed image hash is generated by projecting the invariant image features into a physical unclonable function (PUF)-defined Bernoulli random space. The tamper-resistant random PUF response is unique for each camera and can only be generated upon triggered by a challenge, which is provided by the image acquisition timestamp. The proposed hash is evaluated on the modified CASIA database and CMOS image sensor-based PUF simulated using 180 nm TSMC technology. It achieves a high tamper detection rate of 95.42% with the regions of tampered content successfully located, a good authentication performance of above 98.5% against standard content-preserving manipulations, and 96.25% and 90.42%, respectively, for the more challenging geometric transformations of rotation (0 360°) and scaling (scale factor in each dimension: 0.5). It is demonstrated to be able to identify the source camera with 100% accuracy and is secure against attacks on PUF.
Verdoliva, L..  2020.  Media Forensics and DeepFakes: An Overview. IEEE Journal of Selected Topics in Signal Processing. 14:910—932.
With the rapid progress in recent years, techniques that generate and manipulate multimedia content can now provide a very advanced level of realism. The boundary between real and synthetic media has become very thin. On the one hand, this opens the door to a series of exciting applications in different fields such as creative arts, advertising, film production, and video games. On the other hand, it poses enormous security threats. Software packages freely available on the web allow any individual, without special skills, to create very realistic fake images and videos. These can be used to manipulate public opinion during elections, commit fraud, discredit or blackmail people. Therefore, there is an urgent need for automated tools capable of detecting false multimedia content and avoiding the spread of dangerous false information. This review paper aims to present an analysis of the methods for visual media integrity verification, that is, the detection of manipulated images and videos. Special emphasis will be placed on the emerging phenomenon of deepfakes, fake media created through deep learning tools, and on modern data-driven forensic methods to fight them. The analysis will help highlight the limits of current forensic tools, the most relevant issues, the upcoming challenges, and suggest future directions for research.
Yang, Z., Sun, Q., Zhang, Y., Zhu, L., Ji, W..  2020.  Inference of Suspicious Co-Visitation and Co-Rating Behaviors and Abnormality Forensics for Recommender Systems. IEEE Transactions on Information Forensics and Security. 15:2766—2781.
The pervasiveness of personalized collaborative recommender systems has shown the powerful capability in a wide range of E-commerce services such as Amazon, TripAdvisor, Yelp, etc. However, fundamental vulnerabilities of collaborative recommender systems leave space for malicious users to affect the recommendation results as the attackers desire. A vast majority of existing detection methods assume certain properties of malicious attacks are given in advance. In reality, improving the detection performance is usually constrained due to the challenging issues: (a) various types of malicious attacks coexist, (b) limited representations of malicious attack behaviors, and (c) practical evidences for exploring and spotting anomalies on real-world data are scarce. In this paper, we investigate a unified detection framework in an eye for an eye manner without being bothered by the details of the attacks. Firstly, co-visitation and co-rating graphs are constructed using association rules. Then, attribute representations of nodes are empirically developed from the perspectives of linkage pattern, structure-based property and inherent association of nodes. Finally, both attribute information and connective coherence of graph are combined in order to infer suspicious nodes. Extensive experiments on both synthetic and real-world data demonstrate the effectiveness of the proposed detection approach compared with competing benchmarks. Additionally, abnormality forensics metrics including distribution of rating intention, time aggregation of suspicious ratings, degree distributions before as well as after removing suspicious nodes and time series analysis of historical ratings, are provided so as to discover interesting findings such as suspicious nodes (items or ratings) on real-world data.
2021-03-04
Carlini, N., Farid, H..  2020.  Evading Deepfake-Image Detectors with White- and Black-Box Attacks. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). :2804—2813.

It is now possible to synthesize highly realistic images of people who do not exist. Such content has, for example, been implicated in the creation of fraudulent socialmedia profiles responsible for dis-information campaigns. Significant efforts are, therefore, being deployed to detect synthetically-generated content. One popular forensic approach trains a neural network to distinguish real from synthetic content.We show that such forensic classifiers are vulnerable to a range of attacks that reduce the classifier to near- 0% accuracy. We develop five attack case studies on a state- of-the-art classifier that achieves an area under the ROC curve (AUC) of 0.95 on almost all existing image generators, when only trained on one generator. With full access to the classifier, we can flip the lowest bit of each pixel in an image to reduce the classifier's AUC to 0.0005; perturb 1% of the image area to reduce the classifier's AUC to 0.08; or add a single noise pattern in the synthesizer's latent space to reduce the classifier's AUC to 0.17. We also develop a black-box attack that, with no access to the target classifier, reduces the AUC to 0.22. These attacks reveal significant vulnerabilities of certain image-forensic classifiers.

2021-02-23
Patil, A., Jha, A., Mulla, M. M., Narayan, D. G., Kengond, S..  2020.  Data Provenance Assurance for Cloud Storage Using Blockchain. 2020 International Conference on Advances in Computing, Communication Materials (ICACCM). :443—448.

Cloud forensics investigates the crime committed over cloud infrastructures like SLA-violations and storage privacy. Cloud storage forensics is the process of recording the history of the creation and operations performed on a cloud data object and investing it. Secure data provenance in the Cloud is crucial for data accountability, forensics, and privacy. Towards this, we present a Cloud-based data provenance framework using Blockchain, which traces data record operations and generates provenance data. Initially, we design a dropbox like application using AWS S3 storage. The application creates a cloud storage application for the students and faculty of the university, thereby making the storage and sharing of work and resources efficient. Later, we design a data provenance mechanism for confidential files of users using Ethereum blockchain. We also evaluate the proposed system using performance parameters like query and transaction latency by varying the load and number of nodes of the blockchain network.

2021-01-15
Zeid, R. B., Moubarak, J., Bassil, C..  2020.  Investigating The Darknet. 2020 International Wireless Communications and Mobile Computing (IWCMC). :727—732.

Cybercrime is growing dramatically in the technological world nowadays. World Wide Web criminals exploit the personal information of internet users and use them to their advantage. Unethical users leverage the dark web to buy and sell illegal products or services and sometimes they manage to gain access to classified government information. A number of illegal activities that can be found in the dark web include selling or buying hacking tools, stolen data, digital fraud, terrorists activities, drugs, weapons, and more. The aim of this project is to collect evidence of any malicious activity in the dark web by using computer security mechanisms as traps called honeypots.

McCloskey, S., Albright, M..  2019.  Detecting GAN-Generated Imagery Using Saturation Cues. 2019 IEEE International Conference on Image Processing (ICIP). :4584—4588.
Image forensics is an increasingly relevant problem, as it can potentially address online disinformation campaigns and mitigate problematic aspects of social media. Of particular interest, given its recent successes, is the detection of imagery produced by Generative Adversarial Networks (GANs), e.g. `deepfakes'. Leveraging large training sets and extensive computing resources, recent GANs can be trained to generate synthetic imagery which is (in some ways) indistinguishable from real imagery. We analyze the structure of the generating network of a popular GAN implementation [1], and show that the network's treatment of exposure is markedly different from a real camera. We further show that this cue can be used to distinguish GAN-generated imagery from camera imagery, including effective discrimination between GAN imagery and real camera images used to train the GAN.