Visible to the public Biblio

Filters: Keyword is smart grid consumer privacy  [Clear All Filters]
2020-11-20
Roy, D. D., Shin, D..  2019.  Network Intrusion Detection in Smart Grids for Imbalanced Attack Types Using Machine Learning Models. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :576—581.
Smart grid has evolved as the next generation power grid paradigm which enables the transfer of real time information between the utility company and the consumer via smart meter and advanced metering infrastructure (AMI). These information facilitate many services for both, such as automatic meter reading, demand side management, and time-of-use (TOU) pricing. However, there have been growing security and privacy concerns over smart grid systems, which are built with both smart and legacy information and operational technologies. Intrusion detection is a critical security service for smart grid systems, alerting the system operator for the presence of ongoing attacks. Hence, there has been lots of research conducted on intrusion detection in the past, especially anomaly-based intrusion detection. Problems emerge when common approaches of pattern recognition are used for imbalanced data which represent much more data instances belonging to normal behaviors than to attack ones, and these approaches cause low detection rates for minority classes. In this paper, we study various machine learning models to overcome this drawback by using CIC-IDS2018 dataset [1].
Lu, X., Guan, Z., Zhou, X., Du, X., Wu, L., Guizani, M..  2019.  A Secure and Efficient Renewable Energy Trading Scheme Based on Blockchain in Smart Grid. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1839—1844.
Nowadays, with the diversification and decentralization of energy systems, the energy Internet makes it possible to interconnect distributed energy sources and consumers. In the energy trading market, the traditional centralized model relies entirely on trusted third parties. However, as the number of entities involved in the transactions grows and the forms of transactions diversify, the centralized model gradually exposes problems such as insufficient scalability, High energy consumption, and low processing efficiency. To address these challenges, we propose a secure and efficient energy renewable trading scheme based on blockchain. In our scheme, the electricity market trading model is divided into two levels, which can not only protect the privacy, but also achieve a green computing. In addition, in order to adapt to the relatively weak computing power of the underlying equipment in smart grid, we design a credibility-based equity proof mechanism to greatly improve the system availability. Compared with other similar distributed energy trading schemes, we prove the advantages of our scheme in terms of high operational efficiency and low computational overhead through experimental evaluations. Additionally, we conduct a detailed security analysis to demonstrate that our solution meets the security requirements.
Lardier, W., Varo, Q., Yan, J..  2019.  Quantum-Sim: An Open-Source Co-Simulation Platform for Quantum Key Distribution-Based Smart Grid Communications. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1—6.
Grid modernization efforts with the latest information and communication technologies will significantly benefit smart grids in the coming years. More optical fibre communications between consumers and the control center will promise better demand response and customer engagement, yet the increasing attack surface and man-in-the-middle (MITM) threats can result in security and privacy challenges. Among the studies for more secure smart grid communications, quantum key distribution protocols (QKD) have emerged as a promising option. To bridge the theoretical advantages of quantum communication to its practical utilization, however, comprehensive investigations have to be conducted with realistic cyber-physical smart grid structures and scenarios. To facilitate research in this direction, this paper proposes an open-source, research-oriented co-simulation platform that orchestrates cyber and power simulators under the MOSAIK framework. The proposed platform allows flexible and realistic power flow-based co-simulation of quantum communications and electrical grids, where different cyber and power topologies, QKD protocols, and attack threats can be investigated. Using quantum-based communication under MITM attacks, the paper presented detailed case studies to demonstrate how the platform enables quick setup of a lowvoltage distribution grid, implementation of different protocols and cryptosystems, as well as evaluations of both communication efficiency and security against MITM attacks. The platform has been made available online to empower researchers in the modelling of quantum-based cyber-physical systems, pilot studies on quantum communications in smart grid, as well as improved attack resilience against malicious intruders.
Romdhane, R. B., Hammami, H., Hamdi, M., Kim, T..  2019.  At the cross roads of lattice-based and homomorphic encryption to secure data aggregation in smart grid. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :1067—1072.

Various research efforts have focused on the problem of customer privacy protection in the smart grid arising from the large deployment of smart energy meters. In fact, the deployed smart meters distribute accurate profiles of home energy use, which can reflect the consumers' behaviour. This paper proposes a privacy-preserving lattice-based homomorphic aggregation scheme. In this approach, the smart household appliances perform the data aggregation while the smart meter works as relay node. Its role is to authenticate the exchanged messages between the home area network appliances and the related gateway. Security analysis show that our scheme guarantees consumer privacy and messages confidentiality and integrity in addition to its robustness against several attacks. Experimental results demonstrate the efficiency of our proposed approach in terms of communication complexity.

Antoniadis, I. I., Chatzidimitriou, K. C., Symeonidis, A. L..  2019.  Security and Privacy for Smart Meters: A Data-Driven Mapping Study. 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :1—5.
Smart metering systems have been gaining popularity as a vital part of the general smart grid paradigm. Naturally, as new technologies arise to cover this emerging field, so do security and privacy related issues regarding the energy consumer's personal data. These challenges impose the need for the development of new methods through a better understanding of the state-of-the-art. This paper aims at identifying the main categories of security and privacy techniques utilized in smart metering systems from a three-point perspective: i) a field research survey, ii) EU initiatives and findings towards the same direction and iii) a data-driven analysis of the state-of-the-art and the identification of its main topics (or themes) using topic modeling techniques. Detailed quantitative results of this analysis, such as semantic interpretation of the identified topics and a graph representation of the topic trends over time, are presented.
Chin, J., Zufferey, T., Shyti, E., Hug, G..  2019.  Load Forecasting of Privacy-Aware Consumers. 2019 IEEE Milan PowerTech. :1—6.

The roll-out of smart meters (SMs) in the electric grid has enabled data-driven grid management and planning techniques. SM data can be used together with short-term load forecasts (STLFs) to overcome polling frequency constraints for better grid management. However, the use of SMs that report consumption data at high spatial and temporal resolutions entails consumer privacy risks, motivating work in protecting consumer privacy. The impact of privacy protection schemes on STLF accuracy is not well studied, especially for smaller aggregations of consumers, whose load profiles are subject to more volatility and are, thus, harder to predict. In this paper, we analyse the impact of two user demand shaping privacy protection schemes, model-distribution predictive control (MDPC) and load-levelling, on STLF accuracy. Support vector regression is used to predict the load profiles at different consumer aggregation levels. Results indicate that, while the MDPC algorithm marginally affects forecast accuracy for smaller consumer aggregations, this diminishes at higher aggregation levels. More importantly, the load-levelling scheme significantly improves STLF accuracy as it smoothens out the grid visible consumer load profile.

2019-06-24
Kim, Gihoon, Choi, Chang, Choi, Junho.  2018.  Ontology Modeling for APT Attack Detection in an IoT-based Power System. Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems. :160–164.

Smart grid technology is the core technology for the next-generation power grid system with enhanced energy efficiency through decision-making communication between suppliers and consumers enabled by integrating the IoT into the existing grid. This open architecture allowing bilateral information exchange makes it vulnerable to various types of cyberattack. APT attacks, one of the most common cyberattacks, are highly tricky and sophisticated attacks that can circumvent the existing detection technology and attack the targeted system after a certain latent period after intrusion. This paper proposes an ontology-based attack detection system capable of early detection of and response to APT attacks by analyzing their attacking patterns.

Diamond, Lisa, Schrammel, Johann, Fröhlich, Peter, Regal, Georg, Tscheligi, Manfred.  2018.  Privacy in the Smart Grid: End-user Concerns and Requirements. Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct. :189–196.

Mobile interfaces will be central in connecting end-users to the smart grid and enabling their active participation. Services and features supporting this participation do, however, rely on high-frequency collection and transmission of energy usage data by smart meters which is privacy-sensitive. The successful communication of privacy to end-users via consumer interfaces will therefore be crucial to ensure smart meter acceptance and consequently enable participation. Current understanding of user privacy concerns in this context is not very differentiated, and user privacy requirements have received little attention. A preliminary user questionnaire study was conducted to gain a more detailed understanding of the differing perceptions of various privacy risks and the relative importance of different privacy-ensuring measures. The results underline the significance of open communication, restraint in data collection and usage, user control, transparency, communication of security measures, and a good customer relationship.

Cao, H., Liu, S., Guan, Z., Wu, L., Deng, H., Du, X..  2018.  An Efficient Privacy-Preserving Algorithm Based on Randomized Response in IoT-Based Smart Grid. 2018 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :881–886.

In this paper, we propose a new randomized response algorithm that can achieve differential-privacy and utility guarantees for consumer's behaviors, and process a batch of data at each time. Firstly, differing from traditional differential private approach-es, we add randomized response noise into the behavior signa-tures matrix to achieve an acceptable utility-privacy tradeoff. Secondly, a behavior signature modeling method based on sparse coding is proposed. After some lightweight trainings us-ing the energy consumption data, the dictionary will be associat-ed with the behavior characteristics of the electric appliances. At last, through the experimental results verification, we find that our Algorithm can preserve consumer's privacy without comprising utility.

You, Y., Li, Z., Oechtering, T. J..  2018.  Optimal Privacy-Enhancing And Cost-Efficient Energy Management Strategies For Smart Grid Consumers. 2018 IEEE Statistical Signal Processing Workshop (SSP). :826–830.

The design of optimal energy management strategies that trade-off consumers' privacy and expected energy cost by using an energy storage is studied. The Kullback-Leibler divergence rate is used to assess the privacy risk of the unauthorized testing on consumers' behavior. We further show how this design problem can be formulated as a belief state Markov decision process problem so that standard tools of the Markov decision process framework can be utilized, and the optimal solution can be obtained by using Bellman dynamic programming. Finally, we illustrate the privacy-enhancement and cost-saving by numerical examples.

Okay, F. Y., Ozdemir, S..  2018.  A secure data aggregation protocol for fog computing based smart grids. 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018). :1–6.

In Smart Grids (SGs), data aggregation process is essential in terms of limiting packet size, data transmission amount and data storage requirements. This paper presents a novel Domingo-Ferrer additive privacy based Secure Data Aggregation (SDA) scheme for Fog Computing based SGs (FCSG). The proposed protocol achieves end-to-end confidentiality while ensuring low communication and storage overhead. Data aggregation is performed at fog layer to reduce the amount of data to be processed and stored at cloud servers. As a result, the proposed protocol achieves better response time and less computational overhead compared to existing solutions. Moreover, due to hierarchical architecture of FCSG and additive homomorphic encryption consumer privacy is protected from third parties. Theoretical analysis evaluates the effects of packet size and number of packets on transmission overhead and the amount of data stored in cloud server. In parallel with the theoretical analysis, our performance evaluation results show that there is a significant improvement in terms of data transmission and storage efficiency. Moreover, security analysis proves that the proposed scheme successfully ensures the privacy of collected data.

Oriero, E., Rahman, M. A..  2018.  Privacy Preserving Fine-Grained Data Distribution Aggregation for Smart Grid AMI Networks. MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). :1–9.

An advanced metering infrastructure (AMI) allows real-time fine-grained monitoring of the energy consumption data of individual consumers. Collected metering data can be used for a multitude of applications. For example, energy demand forecasting, based on the reported fine-grained consumption, can help manage the near future energy production. However, fine- grained metering data reporting can lead to privacy concerns. It is, therefore, imperative that the utility company receives the fine-grained data needed to perform the intended demand response service, without learning any sensitive information about individual consumers. In this paper, we propose an anonymous privacy preserving fine-grained data aggregation scheme for AMI networks. In this scheme, the utility company receives only the distribution of the energy consumption by the consumers at different time slots. We leverage a network tree topology structure in which each smart meter randomly reports its energy consumption data to its parent smart meter (according to the tree). The parent node updates the consumption distribution and forwards the data to the utility company. Our analysis results show that the proposed scheme can preserve the privacy and security of individual consumers while guaranteeing the demand response service.

Bessa, Ricardo J., Rua, David, Abreu, Cláudia, Machado, Paulo, Andrade, José R., Pinto, Rui, Gonçalves, Carla, Reis, Marisa.  2018.  Data Economy for Prosumers in a Smart Grid Ecosystem. Proceedings of the Ninth International Conference on Future Energy Systems. :622–630.

Smart grids technologies are enablers of new business models for domestic consumers with local flexibility (generation, loads, storage) and where access to data is a key requirement in the value stream. However, legislation on personal data privacy and protection imposes the need to develop local models for flexibility modeling and forecasting and exchange models instead of personal data. This paper describes the functional architecture of an home energy management system (HEMS) and its optimization functions. A set of data-driven models, embedded in the HEMS, are discussed for improving renewable energy forecasting skill and modeling multi-period flexibility of distributed energy resources.

Chouikhi, S., Merghem-Boulahia, L., Esseghir, M..  2018.  Energy Demand Scheduling Based on Game Theory for Microgrids. 2018 IEEE International Conference on Communications (ICC). :1–6.

The advent of smart grids offers us the opportunity to better manage the electricity grids. One of the most interesting challenges in the modern grids is the consumer demand management. Indeed, the development in Information and Communication Technologies (ICTs) encourages the development of demand-side management systems. In this paper, we propose a distributed energy demand scheduling approach that uses minimal interactions between consumers to optimize the energy demand. We formulate the consumption scheduling as a constrained optimization problem and use game theory to solve this problem. On one hand, the proposed approach aims to reduce the total energy cost of a building's consumers. This imposes the cooperation between all the consumers to achieve the collective goal. On the other hand, the privacy of each user must be protected, which means that our distributed approach must operate with a minimal information exchange. The performance evaluation shows that the proposed approach reduces the total energy cost, each consumer's individual cost, as well as the peak to average ratio.

Wang, J., Zhang, X., Zhang, H., Lin, H., Tode, H., Pan, M., Han, Z..  2018.  Data-Driven Optimization for Utility Providers with Differential Privacy of Users' Energy Profile. 2018 IEEE Global Communications Conference (GLOBECOM). :1–6.

Smart meters migrate conventional electricity grid into digitally enabled Smart Grid (SG), which is more reliable and efficient. Fine-grained energy consumption data collected by smart meters helps utility providers accurately predict users' demands and significantly reduce power generation cost, while it imposes severe privacy risks on consumers and may discourage them from using those “espionage meters". To enjoy the benefits of smart meter measured data without compromising the users' privacy, in this paper, we try to integrate distributed differential privacy (DDP) techniques into data-driven optimization, and propose a novel scheme that not only minimizes the cost for utility providers but also preserves the DDP of users' energy profiles. Briefly, we add differential private noises to the users' energy consumption data before the smart meters send it to the utility provider. Due to the uncertainty of the users' demand distribution, the utility provider aggregates a given set of historical users' differentially private data, estimates the users' demands, and formulates the data- driven cost minimization based on the collected noisy data. We also develop algorithms for feasible solutions, and verify the effectiveness of the proposed scheme through simulations using the simulated energy consumption data generated from the utility company's real data analysis.

2018-05-30
Tavasoli, M., Alishahi, S., Zabihi, M., Khorashadizadeh, H., Mohajerzadeh, A. H..  2017.  An Efficient NSKDP Authentication Method to Secure Smart Grid. 2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE). :276–280.

Since the Information Networks are added to the current electricity networks, the security and privacy of individuals is challenged. This combination of technologies creates vulnerabilities in the context of smart grid power which disrupt the consumer energy supply. Methods based on encryption are against the countermeasures attacks that have targeted the integrity and confidentiality factors. Although the cryptography strategies are used in Smart Grid, key management which is different in size from tens to millions of keys (for meters), is considered as the critical processes. The Key mismanagement causes to reveal the secret keys for attacker, a symmetric key distribution method is recently suggested by [7] which is based on a symmetric key distribution, this strategy is very suitable for smart electric meters. The problem with this method is its vulnerability to impersonating respondents attack. The proposed approach to solve this problem is to send the both side identifiers in encrypted form based on hash functions and a random value, the proposed solution is appropriate for devices such as meters that have very little computing power.

Chang, S. H., William, T., Wu, W. Z., Cheng, B. C., Chen, H., Hsu, P. H..  2017.  Design of an Authentication and Key Management System for a Smart Meter Gateway in AMI. 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE). :1–2.

By applying power usage statistics from smart meters, users are able to save energy in their homes or control smart appliances via home automation systems. However, owing to security and privacy concerns, it is recommended that smart meters (SM) should not have direct communication with smart appliances. In this paper, we propose a design for a smart meter gateway (SMGW) associated with a two-phase authentication mechanism and key management scheme to link a smart grid with smart appliances. With placement of the SMGW, we can reduce the design complexity of SMs as well as enhance the strength of security.

Alamaniotis, M., Tsoukalas, L. H., Bourbakis, N..  2017.  Anticipatory Driven Nodal Electricity Load Morphing in Smart Cities Enhancing Consumption Privacy. 2017 IEEE Manchester PowerTech. :1–6.

Integration of information technologies with the current power infrastructure promises something further than a smart grid: implementation of smart cities. Power efficient cities will be a significant step toward greener cities and a cleaner environment. However, the extensive use of information technologies in smart cities comes at a cost of reduced privacy. In particular, consumers' power profiles will be accessible by third parties seeking information over consumers' personal habits. In this paper, a methodology for enhancing privacy of electricity consumption patterns is proposed and tested. The proposed method exploits digital connectivity and predictive tools offered via smart grids to morph consumption patterns by grouping consumers via an optimization scheme. To that end, load anticipation, correlation and Theil coefficients are utilized synergistically with genetic algorithms to find an optimal assembly of consumers whose aggregated pattern hides individual consumption features. Results highlight the efficiency of the proposed method in enhancing privacy in the environment of smart cities.

Afrin, S., Mishra, S..  2017.  On the Analysis of Collaborative Anonymity Set Formation (CASF) Method for Privacy in the Smart Grid. 2017 IEEE International Symposium on Technologies for Homeland Security (HST). :1–6.

The collection of high frequency metering data in the emerging smart grid gives rise to the concern of consumer privacy. Anonymization of metering data is one of the proposed approaches in the literature, which enables transmission of unmasked data while preserving the privacy of the sender. Distributed anonymization methods can reduce the dependency on service providers, thus promising more privacy for the consumers. However, the distributed communication among the end-users introduces overhead and requires methods to prevent external attacks. In this paper, we propose four variants of a distributed anonymization method for smart metering data privacy, referred to as the Collaborative Anonymity Set Formation (CASF) method. The performance overhead analysis and security analysis of the variants are done using NS-3 simulator and the Scyther tool, respectively. It is shown that the proposed scheme enhances the privacy preservation functionality of an existing anonymization scheme, while being robust against external attacks.

Wen, M., Zhang, X., Li, H., Li, J..  2017.  A Data Aggregation Scheme with Fine-Grained Access Control for the Smart Grid. 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall). :1–5.

With the rapid development of smart grid, smart meters are deployed at energy consumers' premises to collect real-time usage data. Although such a communication model can help the control center of the energy producer to improve the efficiency and reliability of electricity delivery, it also leads to some security issues. For example, this real-time data involves the customers' privacy. Attackers may violate the privacy for house breaking, or they may tamper with the transmitted data for their own benefits. For this purpose, many data aggregation schemes are proposed for privacy preservation. However, rare of them cares about both the data aggregation and fine-grained access control to improve the data utility. In this paper, we proposes a data aggregation scheme based on attribute decision tree. Security analysis illustrates that our scheme can achieve the data integrity, data privacy preservation and fine- grained data access control. Experiment results show that our scheme are more efficient than existing schemes.

Melo, Jr, Wilson S., Bessani, Alysson, Carmo, Luiz F. R. C..  2017.  How Blockchains Can Help Legal Metrology. Proceedings of the 1st Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers. :5:1–5:2.

Legal metrology embraces the regulation and control of measuring instruments (MI) used in a diversity of applications including industry, transportation, commerce, medical care and environment protection [3]. Only in Europe, MI are responsible for an annual turnover of more than 500 billion Euros [1]. In developing countries, MI demand has increased substantially due to the adoption of technologies and methods well established in developed countries [3]. MI also can be seen as elementary build blocks for new technologies such as smart grids, Internet of Things and cyber physical systems [1, 2]. Thus legal metrology is crucial to assure the correctness of measurements, protecting the economic system while regulating consumer relations and enhances MI reliability [2].

Laszka, Aron, Dubey, Abhishek, Walker, Michael, Schmidt, Doug.  2017.  Providing Privacy, Safety, and Security in IoT-Based Transactive Energy Systems Using Distributed Ledgers. Proceedings of the Seventh International Conference on the Internet of Things. :13:1–13:8.

Power grids are undergoing major changes due to rapid growth in renewable energy resources and improvements in battery technology. While these changes enhance sustainability and efficiency, they also create significant management challenges as the complexity of power systems increases. To tackle these challenges, decentralized Internet-of-Things (IoT) solutions are emerging, which arrange local communities into transactive microgrids. Within a transactive microgrid, "prosumers" (i.e., consumers with energy generation and storage capabilities) can trade energy with each other, thereby smoothing the load on the main grid using local supply. It is hard, however, to provide security, safety, and privacy in a decentralized and transactive energy system. On the one hand, prosumers' personal information must be protected from their trade partners and the system operator. On the other hand, the system must be protected from careless or malicious trading, which could destabilize the entire grid. This paper describes Privacy-preserving Energy Transactions (PETra), which is a secure and safe solution for transactive microgrids that enables consumers to trade energy without sacrificing their privacy. PETra builds on distributed ledgers, such as blockchains, and provides anonymity for communication, bidding, and trading.

2018-05-24
Ghosh, Sumit, Ruj, Sushmita.  2017.  Fast Real-Time Authentication Scheme for Smart Grids. Proceedings of the ACM Workshop on Internet of Things (IoT) Security: Issues and Innovations. :2:1–2:7.

We propose a real time authentication scheme for smart grids which improves upon existing schemes. Our scheme is useful in many situations in smart grid operations. The smart grid Control Center (CC) communicates with the sensor nodes installed in the transmission lines so as to utilize real time data for monitoring environmental conditions in order to determine optimum power transmission capacity. Again a smart grid Operation Center (OC) communicates with several Residential Area (RA) gateways (GW) that are in turn connected to the smart meters installed in the consumer premises so as to dynamically control the power supply to meet demand based on real time electricity use information. It is not only necessary to authenticate sensor nodes and other smart devices, but also protect the integrity of messages being communicated. Our scheme is based on batch signatures and are more efficient than existing schemes. Furthermore our scheme is based on stronger notion of security, whereby the batch of signatures verify only if all individual signatures are valid. The communication overhead is kept low by using short signatures for verification.

2018-02-21
Foreman, J. C., Pacheco, F. E..  2017.  Aggregation architecture for data reduction and privacy in advanced metering infrastructure. 2017 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America). :1–5.

Advanced Metering Infrastructure (AMI) have rapidly become a topic of international interest as governments have sponsored their deployment for the purposes of utility service reliability and efficiency, e.g., water and electricity conservation. Two problems plague such deployments. First is the protection of consumer privacy. Second is the problem of huge amounts of data from such deployments. A new architecture is proposed to address these problems through the use of Aggregators, which incorporate temporary data buffering and the modularization of utility grid analysis. These Aggregators are used to deliver anonymized summary data to the central utility while preserving billing and automated connection services.

Zhao, C., He, J., Cheng, P., Chen, J..  2017.  Privacy-preserving consensus-based energy management in smart grid. 2017 IEEE Power Energy Society General Meeting. :1–5.

This paper investigates the privacy-preserving problem of the distributed consensus-based energy management considering both generation units and responsive demands in smart grid. First, we reveal the private information of consumers including the electricity consumption and the sensitivity of the electricity consumption to the electricity price can be disclosed without any privacy-preserving strategy. Then, we propose a privacy-preserving algorithm to preserve the private information of consumers through designing the secret functions, and adding zero-sum and exponentially decreasing noises. We also prove that the proposed algorithm can preserve the privacy while keeping the optimality of the final state and the convergence performance unchanged. Extensive simulations validate the theoretical results and demonstrate the effectiveness of the proposed algorithm.