Visible to the public Biblio

Filters: Keyword is drones  [Clear All Filters]
2022-07-29
Iqbal, Shahrear.  2021.  A Study on UAV Operating System Security and Future Research Challenges. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :0759—0765.
The popularity of Unmanned Aerial Vehicles (UAV) or more commonly known as Drones is increasing recently. UAVs have tremendous potential in various industries, e.g., military, agriculture, transportation, movie, supply chain, and surveillance. UAVs are also popular among hobbyists for photography, racing, etc. Despite the possibilities, many UAV related security incidents are reported nowadays. UAVs can be targeted by malicious parties and if compromised, life-threatening activities can be performed using them. As a result, governments around the world have started to regulate the use of UAVs. We believe that UAVs need an intelligent and automated defense mechanism to ensure the safety of humans, properties, and the UAVs themselves. A major component where we can incorporate the defense mechanism is the operating system. In this paper, we investigate the security of existing operating systems used in consumer and commercial UAVs. We then survey various security issues of UAV operating systems and possible solutions. Finally, we discuss several research challenges for developing a secure operating system for UAVs.
2021-12-20
Kanade, Vijay A..  2021.  Securing Drone-based Ad Hoc Network Using Blockchain. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :1314–1318.
The research proposal discloses a novel drone-based ad-hoc network that leverages acoustic information for power plant surveillance and utilizes a secure blockchain model for protecting the integrity of drone communication over the network. The paper presents a vision for the drone-based networks, wherein drones are employed for monitoring the complex power plant machinery. The drones record acoustic information generated by the power plants and detect anomalies or deviations in machine behavior based on collected acoustic data. The drones are linked to distributed network of computing devices in possession with the plant stakeholders, wherein each computing device maintains a chain of data blocks. The chain of data blocks represents one or more transactions associated with power plants, wherein transactions are related to high risk auditory data set accessed by the drones in an event of anomaly or machine failure. The computing devices add at least one data block to the chain of data blocks in response to valid transaction data, wherein the transaction data is validated by the computing devices owned by power plant personnel.
2021-02-15
Rabieh, K., Mercan, S., Akkaya, K., Baboolal, V., Aygun, R. S..  2020.  Privacy-Preserving and Efficient Sharing of Drone Videos in Public Safety Scenarios using Proxy Re-encryption. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :45–52.
Unmanned Aerial Vehicles (UAVs) also known as drones are being used in many applications where they can record or stream videos. One interesting application is the Intelligent Transportation Systems (ITS) and public safety applications where drones record videos and send them to a control center for further analysis. These videos are shared by various clients such as law enforcement or emergency personnel. In such cases, the recording might include faces of civilians or other sensitive information that might pose privacy concerns. While the video can be encrypted and stored in the cloud that way, it can still be accessed once the keys are exposed to third parties which is completely insecure. To prevent such insecurity, in this paper, we propose proxy re-encryption based sharing scheme to enable third parties to access only limited videos without having the original encryption key. The costly pairing operations in proxy re-encryption are not used to allow rapid access and delivery of the surveillance videos to third parties. The key management is handled by a trusted control center, which acts as the proxy to re-encrypt the data. We implemented and tested the approach in a realistic simulation environment using different resolutions under ns-3. The implementation results and comparisons indicate that there is an acceptable overhead while it can still preserve the privacy of drivers and passengers.
2020-12-17
Sandoval, S., Thulasiraman, P..  2019.  Cyber Security Assessment of the Robot Operating System 2 for Aerial Networks. 2019 IEEE International Systems Conference (SysCon). :1—8.

The Robot Operating System (ROS) is a widely adopted standard robotic middleware. However, its preliminary design is devoid of any network security features. Military grade unmanned systems must be guarded against network threats. ROS 2 is built upon the Data Distribution Service (DDS) standard and is designed to provide solutions to identified ROS 1 security vulnerabilities by incorporating authentication, encryption, and process profile features, which rely on public key infrastructure. The Department of Defense is looking to use ROS 2 for its military-centric robotics platform. This paper seeks to demonstrate that ROS 2 and its DDS security architecture can serve as a functional platform for use in military grade unmanned systems, particularly in unmanned Naval aerial swarms. In this paper, we focus on the viability of ROS 2 to safeguard communications between swarms and a ground control station (GCS). We test ROS 2's ability to mitigate and withstand certain cyber threats, specifically that of rogue nodes injecting unauthorized data and accessing services that will disable parts of the UAV swarm. We use the Gazebo robotics simulator to target individual UAVs to ascertain the effectiveness of our attack vectors under specific conditions. We demonstrate the effectiveness of ROS 2 in mitigating the chosen attack vectors but observed a measurable operational delay within our simulations.

2020-12-11
Fujiwara, N., Shimasaki, K., Jiang, M., Takaki, T., Ishii, I..  2019.  A Real-time Drone Surveillance System Using Pixel-level Short-time Fourier Transform. 2019 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). :303—308.

In this study we propose a novel method for drone surveillance that can simultaneously analyze time-frequency responses in all pixels of a high-frame-rate video. The propellers of flying drones rotate at hundreds of Hz and their principal vibration frequency components are much higher than those of their background objects. To separate the pixels around a drone's propellers from its background, we utilize these time-series features for vibration source localization with pixel-level short-time Fourier transform (STFT). We verify the relationship between the number of taps in the STFT computation and the performance of our algorithm, including the execution time and the localization accuracy, by conducting experiments under various conditions, such as degraded appearance, weather, and defocused blur. The robustness of the proposed algorithm is also verified by localizing a flying multi-copter in real-time in an outdoor scenario.

2020-12-07
Islam, M. S., Verma, H., Khan, L., Kantarcioglu, M..  2019.  Secure Real-Time Heterogeneous IoT Data Management System. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :228–235.
The growing adoption of IoT devices in our daily life engendered a need for secure systems to safely store and analyze sensitive data as well as the real-time data processing system to be as fast as possible. The cloud services used to store and process sensitive data are often come out to be vulnerable to outside threats. Furthermore, to analyze streaming IoT data swiftly, they are in need of a fast and efficient system. The Paper will envision the aspects of complexity dealing with real time data from various devices in parallel, building solution to ingest data from different IOT devices, forming a secure platform to process data in a short time, and using various techniques of IOT edge computing to provide meaningful intuitive results to users. The paper envisions two modules of building a real time data analytics system. In the first module, we propose to maintain confidentiality and integrity of IoT data, which is of paramount importance, and manage large-scale data analytics with real-time data collection from various IoT devices in parallel. We envision a framework to preserve data privacy utilizing Trusted Execution Environment (TEE) such as Intel SGX, end-to-end data encryption mechanism, and strong access control policies. Moreover, we design a generic framework to simplify the process of collecting and storing heterogeneous data coming from diverse IoT devices. In the second module, we envision a drone-based data processing system in real-time using edge computing and on-device computing. As, we know the use of drones is growing rapidly across many application domains including real-time monitoring, remote sensing, search and rescue, delivery of goods, security and surveillance, civil infrastructure inspection etc. This paper demonstrates the potential drone applications and their challenges discussing current research trends and provide future insights for potential use cases using edge and on-device computing.
2020-11-17
Khakurel, U., Rawat, D., Njilla, L..  2019.  2019 IEEE International Conference on Industrial Internet (ICII). 2019 IEEE International Conference on Industrial Internet (ICII). :241—247.

FastChain is a simulator built in NS-3 which simulates the networked battlefield scenario with military applications, connecting tankers, soldiers and drones to form Internet-of-Battlefield-Things (IoBT). Computing, storage and communication resources in IoBT are limited during certain situations in IoBT. Under these circumstances, these resources should be carefully combined to handle the task to accomplish the mission. FastChain simulator uses Sharding approach to provide an efficient solution to combine resources of IoBT devices by identifying the correct and the best set of IoBT devices for a given scenario. Then, the set of IoBT devices for a given scenario collaborate together for sharding enabled Blockchain technology. Interested researchers, policy makers and developers can download and use the FastChain simulator to design, develop and evaluate blockchain enabled IoBT scenarios that helps make robust and trustworthy informed decisions in mission-critical IoBT environment.

2020-10-26
Sun, Pengfei, Garcia, Luis, Zonouz, Saman.  2019.  Tell Me More Than Just Assembly! Reversing Cyber-Physical Execution Semantics of Embedded IoT Controller Software Binaries. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :349–361.
The safety of critical cyber-physical IoT devices hinges on the security of their embedded software that implements control algorithms for monitoring and control of the associated physical processes, e.g., robotics and drones. Reverse engineering of the corresponding embedded controller software binaries enables their security analysis by extracting high-level, domain-specific, and cyber-physical execution semantic information from executables. We present MISMO, a domain-specific reverse engineering framework for embedded binary code in emerging cyber-physical IoT control application domains. The reverse engineering outcomes can be used for firmware vulnerability assessment, memory forensics analysis, targeted memory data attacks, or binary patching for dynamic selective memory protection (e.g., important control algorithm parameters). MISMO performs semantic-matching at an algorithmic level that can help with the understanding of any possible cyber-physical security flaws. MISMO compares low-level binary symbolic values and high-level algorithmic expressions to extract domain-specific semantic information for the binary's code and data. MISMO enables a finer-grained understanding of the controller by identifying the specific control and state estimation algorithms used. We evaluated MISMO on 2,263 popular firmware binaries by 30 commercial vendors from 6 application domains including drones, self-driving cars, smart homes, robotics, 3D printers, and the Linux kernel controllers. The results show that MISMO can accurately extract the algorithm-level semantics of the embedded binary code and data regions. We discovered a zero-day vulnerability in the Linux kernel controllers versions 3.13 and above.
Astaburuaga, Ignacio, Lombardi, Amee, La Torre, Brian, Hughes, Carolyn, Sengupta, Shamik.  2019.  Vulnerability Analysis of AR.Drone 2.0, an Embedded Linux System. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0666–0672.
The goal of this work was to identify and try to solve some of the vulnerabilities present in the AR Drone 2.0 by Parrot. The approach was to identify how the system worked, find and analyze vulnerabilities and flaws in the system as a whole and in the software, and find solutions to those problems. Analyzing the results of some tests showed that the system has an open WiFi network and the communication between the controller and the drone are unencrypted. Analyzing the Linux operating system that the drone uses, we see that "Pairing Mode" is the only way the system protects itself from unauthorized control. This is a feature that can be easily bypassed. Port scans reveal that the system has all the ports for its services open and exposed. This makes it susceptible to attacks like DoS and takeover. This research also focuses on some of the software vulnerabilities, such as Busybox that the drone runs. Lastly, this paper discuses some of the possible methods that can be used to secure the drone. These methods include securing the messages via SSH Tunnel, closing unused ports, and re-implementing the software used by the drone and the controller.
2020-08-03
Al-Emadi, Sara, Al-Ali, Abdulla, Mohammad, Amr, Al-Ali, Abdulaziz.  2019.  Audio Based Drone Detection and Identification using Deep Learning. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :459–464.
In recent years, unmanned aerial vehicles (UAVs) have become increasingly accessible to the public due to their high availability with affordable prices while being equipped with better technology. However, this raises a great concern from both the cyber and physical security perspectives since UAVs can be utilized for malicious activities in order to exploit vulnerabilities by spying on private properties, critical areas or to carry dangerous objects such as explosives which makes them a great threat to the society. Drone identification is considered the first step in a multi-procedural process in securing physical infrastructure against this threat. In this paper, we present drone detection and identification methods using deep learning techniques such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Convolutional Recurrent Neural Network (CRNN). These algorithms will be utilized to exploit the unique acoustic fingerprints of the flying drones in order to detect and identify them. We propose a comparison between the performance of different neural networks based on our dataset which features audio recorded samples of drone activities. The major contribution of our work is to validate the usage of these methodologies of drone detection and identification in real life scenarios and to provide a robust comparison of the performance between different deep neural network algorithms for this application. In addition, we are releasing the dataset of drone audio clips for the research community for further analysis.
2020-06-01
Kosmyna, Nataliya.  2019.  Brain-Computer Interfaces in the Wild: Lessons Learned from a Large-Scale Deployment. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). :4161–4168.
We present data from detailed observations of a “controlled in-the-wild” study of Brain-Computer Interface (BCI) system. During 10 days of demonstration at seven nonspecialized public events, 1563 people learned about the system in various social configurations. Observations of audience behavior revealed recurring behavioral patterns. From these observations a framework of interaction with BCI systems was deduced. It describes the phases of passing by an installation, viewing and reacting, passive and active interaction, group interactions, and follow-up actions. We also conducted semi-structured interviews with the people who interacted with the system. The interviews revealed the barriers and several directions for further research on BCIs. Our findings can be useful for designing the BCIs foxr everyday adoption by a wide range of people.
2020-04-13
Nalamati, Mrunalini, Kapoor, Ankit, Saqib, Muhammed, Sharma, Nabin, Blumenstein, Michael.  2019.  Drone Detection in Long-Range Surveillance Videos. 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). :1–6.

The usage of small drones/UAVs has significantly increased recently. Consequently, there is a rising potential of small drones being misused for illegal activities such as terrorism, smuggling of drugs, etc. posing high-security risks. Hence, tracking and surveillance of drones are essential to prevent security breaches. The similarity in the appearance of small drone and birds in complex background makes it challenging to detect drones in surveillance videos. This paper addresses the challenge of detecting small drones in surveillance videos using popular and advanced deep learning-based object detection methods. Different CNN-based architectures such as ResNet-101 and Inception with Faster-RCNN, as well as Single Shot Detector (SSD) model was used for experiments. Due to sparse data available for experiments, pre-trained models were used while training the CNNs using transfer learning. Best results were obtained from experiments using Faster-RCNN with the base architecture of ResNet-101. Experimental analysis on different CNN architectures is presented in the paper, along with the visual analysis of the test dataset.

2019-02-13
Won, J., Bertino, E..  2018.  Securing Mobile Data Collectors by Integrating Software Attestation and Encrypted Data Repositories. 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC). :26–35.
Drones are increasingly being used as mobile data collectors for various monitoring services. However, since they may move around in unattended hostile areas with valuable data, they can be the targets of malicious physical/cyber attacks. These attacks may aim at stealing privacy-sensitive data, including secret keys, and eavesdropping on communications between the drones and the ground station. To detect tampered drones, a code attestation technique is required. However, since attestation itself does not guarantee that the data in the drones' memory are not leaked, data collected by the drones must be protected and secret keys for secure communications must not be leaked. In this paper, we present a solution integrating techniques for software-based attestation, data encryption and secret key protection. We propose an attestation technique that fills up free memory spaces with data repositories. Data repositories consist of pseudo-random numbers that are also used to encrypt collected data. We also propose a group attestation scheme to efficiently verify the software integrity of multiple drones. Finally, to prevent secret keys from being leaked, we utilize a technique that converts short secret keys into large look-up tables. This technique prevents attackers from abusing free space in the data memory by filling up the space with the look-up tables. To evaluate the integrated solution, we implemented it on AR.Drone and Raspberry Pi.
2019-02-08
Lee, D. ', La, W. Gyu, Kim, H..  2018.  Drone Detection and Identification System Using Artificial Intelligence. 2018 International Conference on Information and Communication Technology Convergence (ICTC). :1131-1133.

As drone attracts much interest, the drone industry has opened their market to ordinary people, making drones to be used in daily lives. However, as it got easier for drone to be used by more people, safety and security issues have raised as accidents are much more likely to happen: colliding into people by losing control or invading secured properties. For safety purposes, it is essential for observers and drone to be aware of an approaching drone. In this paper, we introduce a comprehensive drone detection system based on machine learning. This system is designed to be operable on drones with camera. Based on the camera images, the system deduces location on image and vendor model of drone based on machine classification. The system is actually built with OpenCV library. We collected drone imagery and information for learning process. The system's output shows about 89 percent accuracy.

2018-02-02
Akram, R. N., Markantonakis, K., Mayes, K., Habachi, O., Sauveron, D., Steyven, A., Chaumette, S..  2017.  Security, privacy and safety evaluation of dynamic and static fleets of drones. 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC). :1–12.

Interconnected everyday objects, either via public or private networks, are gradually becoming reality in modern life - often referred to as the Internet of Things (IoT) or Cyber-Physical Systems (CPS). One stand-out example are those systems based on Unmanned Aerial Vehicles (UAVs). Fleets of such vehicles (drones) are prophesied to assume multiple roles from mundane to high-sensitive applications, such as prompt pizza or shopping deliveries to the home, or to deployment on battlefields for battlefield and combat missions. Drones, which we refer to as UAVs in this paper, can operate either individually (solo missions) or as part of a fleet (group missions), with and without constant connection with a base station. The base station acts as the command centre to manage the drones' activities; however, an independent, localised and effective fleet control is necessary, potentially based on swarm intelligence, for several reasons: 1) an increase in the number of drone fleets; 2) fleet size might reach tens of UAVs; 3) making time-critical decisions by such fleets in the wild; 4) potential communication congestion and latency; and 5) in some cases, working in challenging terrains that hinders or mandates limited communication with a control centre, e.g. operations spanning long period of times or military usage of fleets in enemy territory. This self-aware, mission-focused and independent fleet of drones may utilise swarm intelligence for a), air-traffic or flight control management, b) obstacle avoidance, c) self-preservation (while maintaining the mission criteria), d) autonomous collaboration with other fleets in the wild, and e) assuring the security, privacy and safety of physical (drones itself) and virtual (data, software) assets. In this paper, we investigate the challenges faced by fleet of drones and propose a potential course of action on how to overcome them.

2017-12-28
Liang, X., Zhao, J., Shetty, S., Li, D..  2017.  Towards data assurance and resilience in IoT using blockchain. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :261–266.

Data assurance and resilience are crucial security issues in cloud-based IoT applications. With the widespread adoption of drones in IoT scenarios such as warfare, agriculture and delivery, effective solutions to protect data integrity and communications between drones and the control system have been in urgent demand to prevent potential vulnerabilities that may cause heavy losses. To secure drone communication during data collection and transmission, as well as preserve the integrity of collected data, we propose a distributed solution by utilizing blockchain technology along with the traditional cloud server. Instead of registering the drone itself to the blockchain, we anchor the hashed data records collected from drones to the blockchain network and generate a blockchain receipt for each data record stored in the cloud, reducing the burden of moving drones with the limit of battery and process capability while gaining enhanced security guarantee of the data. This paper presents the idea of securing drone data collection and communication in combination with a public blockchain for provisioning data integrity and cloud auditing. The evaluation shows that our system is a reliable and distributed system for drone data assurance and resilience with acceptable overhead and scalability for a large number of drones.

2017-12-20
Rubin, S. H., Grefe, W. K., Bouabana-Tebibel, T., Chen, S. C., Shyu, M. L., Simonsen, K. S..  2017.  Cyber-Secure UAV Communications Using Heuristically Inferred Stochastic Grammars and Hard Real-Time Adaptive Waveform Synthesis and Evolution. 2017 IEEE International Conference on Information Reuse and Integration (IRI). :9–15.
Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few (\textbackslashtextless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- \textbackslashtextbar\textbackslashtextbar
2017-12-12
Bertino, E., Kantarcioglu, M..  2017.  A Cyber-Provenance Infrastructure for Sensor-Based Data-Intensive Applications. 2017 IEEE International Conference on Information Reuse and Integration (IRI). :108–114.

Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few (textless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- textbartextbar

2017-12-04
Sattar, N. S., Adnan, M. A., Kali, M. B..  2017.  Secured aerial photography using Homomorphic Encryption. 2017 International Conference on Networking, Systems and Security (NSysS). :107–114.

Aerial photography is fast becoming essential in scientific research that requires multi-agent system in several perspective and we proposed a secured system using one of the well-known public key cryptosystem namely NTRU that is somewhat homomorphic in nature. Here we processed images of aerial photography that were captured by multi-agents. The agents encrypt the images and upload those in the cloud server that is untrusted. Cloud computing is a buzzword in modern era and public cloud is being used by people everywhere for its shared, on-demand nature. Cloud Environment faces a lot of security and privacy issues that needs to be solved. This paper focuses on how to use cloud so effectively that there remains no possibility of data or computation breaches from the cloud server itself as it is prone to the attack of treachery in different ways. The cloud server computes on the encrypted data without knowing the contents of the images. After concatenation, encrypted result is delivered to the concerned authority where it is decrypted retaining its originality. We set up our experiment in Amazon EC2 cloud server where several instances were the agents and an instance acted as the server. We varied several parameters so that we could minimize encryption time. After experimentation we produced our desired result within feasible time sustaining the image quality. This work ensures data security in public cloud that was our main concern.

2017-09-05
Baker, Richard, Martinovic, Ivan.  2016.  Secure Location Verification with a Mobile Receiver. Proceedings of the 2Nd ACM Workshop on Cyber-Physical Systems Security and Privacy. :35–46.

We present a technique for performing secure location verification of position claims by measuring the time-difference of arrival (TDoA) between a fixed receiver node and a mobile one. The mobile node moves randomly in order to substantially increase the difficulty for an attacker to make false messages appear genuine. We explore the performance and requirements of such a system in the context of verifying aircraft position claims made over the Automatic Dependent Surveillance - Broadcast (ADS-B) system through the use of simulation and find that it correctly detects false claims with a peak accuracy of over 97\textbackslash% for the most complex attack modelled; requiring only 75m of deviation between the reported position and the actual position in order for a false claim to be detected. We then report on our design for a mobile receiver and our construction of a prototype using low-cost COTS equipment. We discuss some additional benefits of incorporating a mobile node, examine the difficulties to be overcome and explore the applicability of the approach in other location verification use-cases.