Biblio
Filters: Keyword is probability [Clear All Filters]
Some Discussions on PHY Security in DF Relay. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :393—397.
.
2022. Physical layer (PHY) security in decode-and-forward (DF) relay systems is discussed. Based on the types of wiretap links, the secrecy performance of three typical secure DF relay models is analyzed. Different from conventional works in this field, rigorous derivations of the secrecy channel capacity are provided from an information-theoretic perspective. Meanwhile, closed-form expressions are derived to characterize the secrecy outage probability (SOP). For the sake of unveiling more system insights, asymptotic analyses are performed on the SOP for a sufficiently large signal-to-noise ratio (SNR). The analytical results are validated by computer simulations and are in excellent agreement.
Analysis Of The Small UAV Trajectory Detection Algorithm Based On The “l/n-d” Criterion Using Kalman Filtering Due To FMCW Radar Data. 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). :741—745.
.
2022. Promising means of detecting small UAVs are FMCW radar systems. Small UAVs with an RCS value of the order of 10−3••• 10−1m2 are characterized by a low SNR (less than 10 dB). To ensure an acceptable probability of detection in the resolution element (more than 0.9), it becomes necessary to reduce the detection threshold. However, this leads to a significant increase in the probability of false alarms (more than 10−3) and is accompanied by the appearance of a large number of false plots. The work describes an algorithm for trajectory detecting of a small UAV based on a “l/n-d” criterion using Kalman filtering in a spherical coordinate system due to FMCW radar data. Statistical analysis of algorithms based on two types of criteria “3/5-2” and “5/9-2” is performed. It is shown that the algorithms allow to achieve the probability of target trajectory detection greater than 0.9 and low probability of false detection of the target trajectory less than 10−4 with the false alarm probability in the resolution element 10−3••• 10−2•
Elliptic Curve Cryptography for Medical Image Security. 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD). :1782–1787.
.
2022. To contribute to medical data security, we propose the application of a modified algorithm on elliptical curves (ECC), initially proposed for text encryption. We implement this algorithm by eliminating the sender-receiver lookup table and grouping the pixel values into pairs to form points on a predefined elliptical curve. Simulation results show that the proposed algorithm offers the best compromise between the quality and the speed of cipher / decipher, especially for large images. A comparative study between ECC and AlGamel showed that the proposed algorithm offers better performance and its application, on medical images, is promising. Medical images contain many pieces of information and are often large. If the cryptographic operation is performed on every single pixel it will take more time. So, working on groups of pixels will be strongly recommended to save time and space.
ISSN: 2474-0446
Secrecy Outage Performance Analysis for IRS-Aided Cognitive Radio NOMA Networks. 2022 IEEE Ninth International Conference on Communications and Electronics (ICCE). :149–154.
.
2022. This paper investigates the physical layer security of a cognitive radio (CR) non-orthogonal multiple-access (NOMA) network supported by an intelligent reflecting surface (IRS). In a CR network, a secondary base station (BS) serves a couple of users, i.e., near and far users, via NOMA transmission under eavesdropping from a malicious attacker. It is assumed that the direct transmission link from the BS and far user is absent due to obstacles. Thus, an IRS is utilized to support far user communication, however, the communication links between the IRS and near/primary users are neglected because of heavy attenuation. The exact secrecy outage probability (SOP) for the near user and approximate SOP for the far user are then derived in closed-form by using the Gauss-Chebyshev approach. The accuracy of the derived analytical SOP is then verified through Monte Carlo simulations. The simulation results also provide useful insights on the impacts of the number of IRS reflecting elements and limited interference temperature on the system SOP.
The Influence of the Use of Fail-Safe Archives of Magnetic Media on the Reliability Indicators of Distributed Systems. 2022 15th International Conference Management of large-scale system development (MLSD). :1—4.
.
2022. A critical property of distributed data processing systems is the high level of reliability of such systems. A practical solution to this problem is to place copies of archives of magnetic media in the nodes of the system. These archives are used to restore data destroyed during the processing of requests to this data. The paper shows the impact of the use of archives on the reliability indicators of distributed systems.
Physical Layer Security Analysis of Cooperative Mobile Communication Systems with Eavesdropper Employing MRC. 2020 28th Signal Processing and Communications Applications Conference (SIU). :1–4.
.
2020. In this paper, physical layer security (PLS) analysis of a cooperative wireless communication system in which the source and destination nodes communicate via a relay employing decode-and-forward protocol is performed for double Rayleigh fading channel model. For the system where the source, relay and target have single antenna, an eavesdropper with multiantenna listens the source and relay together by using maximum-ratio-combining, secrecy outage and positive secrecy capacity possibilities are obtained in closed-form. The theoretical results are verified by Monte-Carlo simulations. From the results, it is observed that as the number of antennas of the eavesdropper is increased, the PLS performance of the system worsens.
A Dynamic Access Control Model Based on Game Theory for the Cloud. 2021 IEEE Global Communications Conference (GLOBECOM). :1–6.
.
2021. The user's access history can be used as an important reference factor in determining whether to allow the current access request or not. And it is often ignored by the existing access control models. To make up for this defect, a Dynamic Trust - game theoretic Access Control model is proposed based on the previous work. This paper proposes a method to quantify the user's trust in the cloud environment, which uses identity trust, behavior trust, and reputation trust as metrics. By modeling the access process as a game and introducing the user's trust value into the pay-off matrix, the mixed strategy Nash equilibrium of cloud user and service provider is calculated respectively. Further, a calculation method for the threshold predefined by the service provider is proposed. Authorization of the access request depends on the comparison of the calculated probability of the user's adopting a malicious access policy with the threshold. Finally, we summarize this paper and make a prospect for future work.
Approaches and Methods for Assessing the Information Security of Data Transmission Networks. 2021 International Conference on Information Science and Communications Technologies (ICISCT). :1–4.
.
2021. The report examines approaches to assessing the information security of data transmission networks (DTN). The analysis of methods for quantitative assessment of information security risks is carried out. A methodological approach to the assessment of IS DTN based on the risk-oriented method is presented. A method for assessing risks based on the mathematical apparatus of the queening systems (QS) is considered and the problem of mathematical modeling is solved.
Physical layer security in cooperative cognitive radio networks with relay selection methods. 2021 International Conference on Advanced Technologies for Communications (ATC). :295—300.
.
2021. This paper studies the physical layer security of four reactive relay selection methods (optimum relay selection, opportunist relay selection enhancement, suboptimal relay selection enhancement and partial relay selection enhancement) in a cooperative cognitive radio network including one pair of primary users, one eavesdropper, multiple relays and secondary users with perfect and imperfect channel state information (CSI) at receivers. In addition, we consider existing a direct link from a secondary source (S) to secondary destination receivers (D) and eavesdroppers (E). The secrecy outage probability, outage probability, intercept probability and reliability are calculated to verify the four relay selection methods with the fading channels by using Monte Carlo simulation. The results show that the loss of secrecy outage probability when remaining direct links from S to D and S to E. Additionally, the results also show that the trade-off between secrecy outage probability and the intercept probability and the optimum relay selection method outperforms other methods.
Secrecy Analysis for Energy Harvesting-Enabled Cognitive Radio Networks in Cascaded Fading Channels. ICC 2021 - IEEE International Conference on Communications. :1—6.
.
2021. Physical-layer security (PLS) for an underlay cognitive radio network (CRN)-based simultaneous wireless information and power transfer (SWIPT) over cascaded κ-µ fading channels is investigated. The network is composed of a pair of secondary users (SUs), a primary user (PU) receiver, and an eavesdropper attempting to intercept the data shared by the SUs. To improve the SUs’ data transmission security, we assume a full-duplex (FD) SU destination, which employs energy harvesting (EH) to extract the power required for generating jamming signals to be emitted to confound the eavesdropper. Two scenarios are presented and compared; harvesting and non-harvesting eavesdropper. Moreover, a trade-off between the system’s secrecy and reliability is explored. PLS is studied in terms of the probability of non-zero secrecy capacity and the intercept probability, whereas the reliability is studied in terms of the outage probability. Results reveal the great impact of jamming over the improvement of the SUs’ secrecy. Additionally, our work indicates that studying the system’s secrecy over cascaded channels has an influence on the system’s PLS that cannot be neglected.
Security for Jamming-Aided Energy Harvesting Cognitive Radio Networks. 2021 International Symposium on Electrical and Electronics Engineering (ISEE). :125—128.
.
2021. We investigate cognitive radio networks where the unlicensed sender operates in the overlay mode to relay the information of the licensed transmitter as well as send its individual information. To secure information broadcasted by the unlicensed sender against the wire-tapper, we invoke jammers to limit eavesdropping. Also, to exploit efficiently radio frequency energy in licensed signals, we propose the unlicensed sender and all jammers to scavenge this energy source. To assess the security measures of both licensed and unlicensed networks, we first derive rigorous closed-form formulas of licensed/unlicensed secrecy outage probabilities. Next, we validate these formulas with Monte-Carlo simulations before using them to achieve insights into the security capability of the proposed jamming-aided energy harvesting cognitive radio networks in crucial system parameters.
Abnormal Detection based on User Feedback for Abstracted Pedestrian Video. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :1036–1038.
.
2019. In this study, we present the abstracted pedestrian behavior representation and abnormal detection method based on user feedback for pedestrian video surveillance system. Video surveillance data is large in size and difficult to process in real time. To solve this problem, we suggested a method of expressing the pedestrian behavior with abbreviated map. In the video surveillance system, false detection of an abnormal situation becomes a big problem. If surveillance user can guide the false detection case as human in the loop, the surveillance system can learn the case and reduce the false detection error in the future. We suggested user feedback based abnormal pedestrian detection method. By the suggested user feedback algorithm, the false detection can be reduced to less than 0.5%.
Abnormal Situation Detection using Global Surveillance Map. 2021 International Conference on Information and Communication Technology Convergence (ICTC). :769–772.
.
2021. in this paper, we describe a method for detecting abnormal pedestrians or cars by expressing the behavioral characteristics of pedestrians on a global surveillance map in a video security system using CCTV and patrol robots. This method converts a large amount of video surveillance data into a compressed map shape format to efficiently transmit and process data. By using deep learning auto-encoder and CNN algorithm, pedestrians belonging to the abnormal category can be detected in two steps. In the case of the first-stage abnormal candidate extraction, the normal detection rate was 87.7%, the abnormal detection rate was 88.3%, and in the second stage abnormal candidate filtering, the normal detection rate was 99.8% and the abnormal detection rate was 96.5%.
Calculation of Risk Parameters of Threats for Protected Information System. 2021 International Russian Automation Conference (RusAutoCon). :89–93.
.
2021. A real or potential threat to various large and small security objects, which comes from both internal and external attackers, determines one or another activities to ensure internal and external security. These actions depend on the spheres of life of state and society, which are targeted by the security threats. These threats can be conveniently classified into political threats (or threats to the existing constitutional order), economic, military, informational, technogenic, environmental, corporate, and other threats. The article discusses a model of an information system, which main criterion is the system security based on the concept of risk. When considering the model, it was determined that it possess multi-criteria aspects. Therefore the establishing the quantitative and qualitative characteristics is a complex and dynamic task. The paper proposes to use the mathematical apparatus of the teletraffic theory in one of the elements of the protected system, namely, in the end-to-end security subsystem.
Zipf's Distribution Caching Application in Named Data Networks. 2021 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream). :1–4.
.
2021. One of the most innovative directions in the Internet is Information Centric Networks, in particular the Named Data Network. This approach should make it easier to find and retrieve the desired information on the network through name-based addressing, intranet caching and other schemes. This article presents Named Data Network modeling, results and performance evaluation of proposed caching policies for Named Data Network research, taking into account the influence of external factors on base of Zipf's law and uniform distribution.
Situational Control of a Computer Network Security System in Conditions of Cyber Attacks. 2021 14th International Conference on Security of Information and Networks (SIN). 1:1–8.
.
2021. Modern cyberattacks are the most powerful disturbance factor for computer networks, as they have a complex and devastating impact. The impact of cyberattacks is primarily aimed at disrupting the performance of computer network protection means. Therefore, managing this defense system in the face of cyberattacks is an important task. The paper examines a technique for constructing an effective control system for a computer network security system operating in real time in the context of cyber attacks. It is supposed that it is built on the basis of constructing a system state space and a stack of control decisions. The probability of finding the security system in certain state at each control step is calculated using a finite Markov chain. The technique makes it possible to predict the number of iterations for managing the security system when exposed to cyber attacks, depending on the segment of the space of its states and the selected number of transitions, as well as automatically generate control decisions. An algorithm has been developed for situational control of a computer network security system in conditions of cyber attacks. The experimental results obtained using the generated dataset demonstrated the high efficiency of the developed technique and the ability to use it to determine the parameters that are most susceptible to abnormal deviations during the impact of cyber attacks.
Optimally-secure Coin-tossing against a Byzantine Adversary. 2021 IEEE International Symposium on Information Theory (ISIT). :2858–2863.
.
2021. Ben-Or and Linial (1985) introduced the full information model for coin-tossing protocols involving \$n\$ processors with unbounded computational power using a common broadcast channel for all their communications. For most adversarial settings, the characterization of the exact or asymptotically optimal protocols remains open. Furthermore, even for the settings where near-optimal asymptotic constructions are known, the exact constants or poly-logarithmic multiplicative factors involved are not entirely well-understood. This work studies \$n\$-processor coin-tossing protocols where every processor broadcasts an arbitrary-length message once. An adaptive Byzantine adversary, based on the messages broadcast so far, can corrupt \$k=1\$ processor. A bias-\$X\$ coin-tossing protocol outputs 1 with probability \$X\$; otherwise, it outputs 0 with probability (\$1-X\$). A coin-tossing protocol's insecurity is the maximum change in the output distribution (in the statistical distance) that a Byzantine adversary can cause. Our objective is to identify bias-\$X\$ coin-tossing protocols achieving near-optimal minimum insecurity for every \$Xın[0,1]\$. Lichtenstein, Linial, and Saks (1989) studied bias-\$X\$ coin-tossing protocols in this adversarial model where each party broadcasts an independent and uniformly random bit. They proved that the elegant “threshold coin-tossing protocols” are optimal for all \$n\$ and \$k\$. Furthermore, Goldwasser, Kalai, and Park (2015), Kalai, Komargodski, and Raz (2018), and Haitner and Karidi-Heller (2020) prove that \$k=\textbackslashtextbackslashmathcalO(\textbackslashtextbackslashsqrtn \textbackslashtextbackslashcdot \textbackslashtextbackslashmathsfpolylog(n)\$) corruptions suffice to fix the output of any bias-\$X\$ coin-tossing protocol. These results encompass parties who send arbitrary-length messages, and each processor has multiple turns to reveal its entire message. We use an inductive approach to constructing coin-tossing protocols using a potential function as a proxy for measuring any bias-\$X\$ coin-tossing protocol's susceptibility to attacks in our adversarial model. Our technique is inherently constructive and yields protocols that minimize the potential function. It is incidentally the case that the threshold protocols minimize the potential function, even for arbitrary-length messages. We demonstrate that these coin-tossing protocols' insecurity is a 2-approximation of the optimal protocol in our adversarial model. For any other \$Xın[0,1]\$ that threshold protocols cannot realize, we prove that an appropriate (convex) combination of the threshold protocols is a 4-approximation of the optimal protocol. Finally, these results entail new (vertex) isoperimetric inequalities for density-\$X\$ subsets of product spaces of arbitrary-size alphabets.
Physical Layer Security Proposal for Wireless Body Area Networks. 2020 IEEE 5th Middle East and Africa Conference on Biomedical Engineering (MECBME). :1–5.
.
2020. Over the last few decades, and thanks to the advancement of embedded systems and wireless technologies, the wireless sensors network (WSN) are increasingly used in many fields. Many researches are being done on the use of WSN in Wireless body Area Network (WBAN) systems to facilitate and improve the quality of care and remote patient monitoring.The broadcast nature of wireless communications makes it difficult to hide transmitted signals from unauthorized users. To this end, Physical layer security is emerging as a promising paradigm to protect wireless communications against eavesdropping attacks. The primary contribution of this paper is achieving a minimum secrecy outage probability by using the jamming technique which can be used by the legitimate communication partner to increase the noise level of the eavesdropper and ensure higher secure communication rate. We also evaluate the effect of additional jammers on the security of the WBAN system.
Towards an Approach of Risk Analysis in Access Control. 2020 13th International Conference on Developments in eSystems Engineering (DeSE). :287–292.
.
2020. Information security provides a set of mechanisms to be implemented in the organisation to protect the disclosure of data to the unauthorised person. Access control is the primary security component that allows the user to authorise the consumption of resources and data based on the predefined permissions. However, the access rules are static in nature, which does not adapt to the dynamic environment includes but not limited to healthcare, cloud computing, IoT, National Security and Intelligence Arena and multi-centric system. There is a need for an additional countermeasure in access decision that can adapt to those working conditions to assess the threats and to ensure privacy and security are maintained. Risk analysis is an act of measuring the threats to the system through various means such as, analysing the user behaviour, evaluating the user trust, and security policies. It is a modular component that can be integrated into the existing access control to predict the risk. This study presents the different techniques and approaches applied for risk analysis in access control. Based on the insights gained, this paper formulates the taxonomy of risk analysis and properties that will allow researchers to focus on areas that need to be improved and new features that could be beneficial to stakeholders.
Redundancy Cyber Resiliency Technique Based on Fast ReRouting under Security Metric. 2020 IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S T). :815–818.
.
2020. The paper is devoted to the development and research of the redundancy cyber resiliency technique based on fast rerouting under security metric with the implementation of the basic schemes for network elements protection, namely node, link, path, and bandwidth. Within the model, the secure fast rerouting task is formulated as an optimization problem of nonlinear programming. The model is configured in order to calculate primary and backup paths that contain links with the minimum values of the probability of compromise that is achieved by using the appropriate weights in the objective function, the value of which is minimized. Numerical research has been conducted, results of which proved the proposed model efficiency and adequacy for the practical application.
False Data Injection Attack Detection Before Decoding in DF Cooperative Relay Network. 2020 Asia Conference on Computers and Communications (ACCC). :57—61.
.
2020. False data injection (FDI) attacks could happen in decode-and-forward (DF) wireless cooperative relay networks. Although physical integrity check (PIC) can combat that by applying physical layer detection, the detector depends on the decoding results and low signal-to-noise ratio (SNR) further deteriorates the detecting results. In this paper, a physical layer detect-before-decode (DbD) method is proposed, which has low computational complexity with no sacrifice of false alarm and miss detection rates. One significant advantage of this method is the detector does not depend on the decoding results. In order to implement the proposed DbD method, a unified error sufficient statistic (UESS) containing the full information of FDI attacks is constructed. The proposed UESS simplifies the detector because it is applicable to all link conditions, which means there is no need to deal each link condition with a specialized sufficient statistic. Moreover, the source to destination outage probability (S2Dop) of the DF cooperative relay network utilizing the proposed DbD method is studied. Finally, numerical simulations verify the good performance of this DbD method.
Prediction of Optimal Power Allocation for Enhancing Security-Reliability Tradeoff with the Application of Artificial Neural Networks. 2020 2nd International Conference on Advances in Computer Technology, Information Science and Communications (CTISC). :40–45.
.
2020. In this paper, we propose a power allocation scheme in order to improve both secure and reliable performance in the wireless two-hop threshold-selection decode-and-forward (DF) relaying networks, which is so crucial to set a threshold value related the signal-to-noise ratio (SNR) of the source signal at relay nodes for perfect decoding. We adapt the maximal-ratio combining (MRC) receiving SNR from the direct and relaying paths both at the destination and at the eavesdropper. Particularly worth mentioning is that the closed expression form of outage probability and intercept probability is driven, which can quantify the security and reliability, respectively. We also make endeavors to utilize a metric to tradeoff the security and the reliability (SRT) and find out the relevance between them in the balanced case. But beyond that, in the pursuit of tradeoff performance, power allocation tends to depend on the threshold value. In other words, it provides a new method optimizing total power to the source and the relay by the threshold value. The results are obtained from analysis, confirmed by simulation, and predicted by artificial neural networks (ANNs), which is trained with back propagation (BP) algorithm, and thus the feasibility of the proposed method is verified.
Insider Threat Identification System Model Based on Rough Set Dimensionality Reduction. 2010 Second World Congress on Software Engineering. 2:111—114.
.
2010. Insider threat makes great damage to the security of information system, traditional security methods are extremely difficult to work. Insider attack identification plays an important role in insider threat detection. Monitoring user's abnormal behavior is an effective method to detect impersonation, this method is applied to insider threat identification, to built user's behavior attribute information database based on weights changeable feedback tree augmented Bayes network, but data is massive, using the dimensionality reduction based on rough set, to establish the process information model of user's behavior attribute. Using the minimum risk Bayes decision can effectively identify the real identity of the user when user's behavior departs from the characteristic model.
Information-theoretic security in wireless multicasting. International Conference on Electrical Computer Engineering (ICECE 2010). :53–56.
.
2010. In this paper, a wireless multicast scenario is considered in which the transmitter sends a common message to a group of client receivers through quasi-static Rayleigh fading channel in the presence of an eavesdropper. The communication between transmitter and each client receiver is said to be secured if the eavesdropper is unable to decode any information. On the basis of an information-theoretic formulation of the confidential communications between transmitter and a group of client receivers, we define the expected secrecy sum-mutual information in terms of secure outage probability and provide a complete characterization of maximum transmission rate at which the eavesdropper is unable to decode any information. Moreover, we find the probability of non-zero secrecy mutual information and present an analytical expression for ergodic secrecy multicast mutual information of the proposed model.
Wireless Information-Theoretic Security. IEEE Transactions on Information Theory. 54:2515–2534.
.
2008. This paper considers the transmission of confidential data over wireless channels. Based on an information-theoretic formulation of the problem, in which two legitimates partners communicate over a quasi-static fading channel and an eavesdropper observes their transmissions through a second independent quasi-static fading channel, the important role of fading is characterized in terms of average secure communication rates and outage probability. Based on the insights from this analysis, a practical secure communication protocol is developed, which uses a four-step procedure to ensure wireless information-theoretic security: (i) common randomness via opportunistic transmission, (ii) message reconciliation, (iii) common key generation via privacy amplification, and (iv) message protection with a secret key. A reconciliation procedure based on multilevel coding and optimized low-density parity-check (LDPC) codes is introduced, which allows to achieve communication rates close to the fundamental security limits in several relevant instances. Finally, a set of metrics for assessing average secure key generation rates is established, and it is shown that the protocol is effective in secure key renewal-even in the presence of imperfect channel state information.