Visible to the public Biblio

Found 203 results

Filters: Keyword is probability  [Clear All Filters]
2018-06-11
Zabib, D. Z., Levi, I., Fish, A., Keren, O..  2017.  Secured Dual-Rail-Precharge Mux-based (DPMUX) symmetric-logic for low voltage applications. 2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S). :1–2.

Hardware implementations of cryptographic algorithms may leak information through numerous side channels, which can be used to reveal the secret cryptographic keys, and therefore compromise the security of the algorithm. Power Analysis Attacks (PAAs) [1] exploit the information leakage from the device's power consumption (typically measured on the supply and/or ground pins). Digital circuits consume dynamic switching energy when data propagate through the logic in each new calculation (e.g. new clock cycle). The average power dissipation of a design can be expressed by: Ptot(t) = α · (Pd(t) + Ppvt(t)) (1) where α is the activity factor (the probability that the gate will switch) and depends on the probability distribution of the inputs to the combinatorial logic. This induces a linear relationship between the power and the processed data [2]. Pd is the deterministic power dissipated by the switching of the gate, including any parasitic and intrinsic capacitances, and hence can be evaluated prior to manufacturing. Ppvt is the change in expected power consumption due to nondeterministic parameters such as process variations, mismatch, temperature, etc. In this manuscript, we describe the design of logic gates that induce data-independent (constant) α and Pd.

2018-06-07
Kang, E. Y., Mu, D., Huang, L., Lan, Q..  2017.  Verification and Validation of a Cyber-Physical System in the Automotive Domain. 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :326–333.
Software development for Cyber-Physical Systems (CPS), e.g., autonomous vehicles, requires both functional and non-functional quality assurance to guarantee that the CPS operates safely and effectively. EAST-ADL is a domain specific architectural language dedicated to safety-critical automotive embedded system design. We have previously modified EAST-ADL to include energy constraints and transformed energy-aware real-time (ERT) behaviors modeled in EAST-ADL/Stateflow into UPPAAL models amenable to formal verification. Previous work is extended in this paper by including support for Simulink and an integration of Simulink/Stateflow (S/S) within the same too lchain. S/S models are transformed, based on the extended ERT constraints with probability parameters, into verifiable UPPAAL-SMC models and integrate the translation with formal statistical analysis techniques: Probabilistic extension of EAST-ADL constraints is defined as a semantics denotation. A set of mapping rules is proposed to facilitate the guarantee of translation. Formal analysis on both functional- and non-functional properties is performed using Simulink Design Verifier and UPPAAL-SMC. Our approach is demonstrated on the autonomous traffic sign recognition vehicle case study.
Li, W., Liu, K., Wang, S., Lei, J., Li, E., Li, X..  2017.  Full-duplex relay for enhancing physical layer security in Wireless Sensor Networks: Optimal power allocation for minimizing secrecy outage probability. 2017 IEEE 17th International Conference on Communication Technology (ICCT). :906–910.
In this paper, we address the physical layer security problem for Wireless Sensor Networks in the presence of passive eavesdroppers, i.e., the eavesdroppers' channels are unknown to the transmitter. We use a multi-antenna relay to guarantee physical layer security. Different from the existing work, we consider that the relay works in full duplex mode and transmits artificial noise (AN) in both stages of the decode-and-forward (DF) cooperative strategy. We proposed two optimal power allocation strategies for power constrained and power unconstrained systems respectively. For power constrained system, our aim is to minimize the secrecy rate outage probability. And for power unconstrained systems, we obtain the optimal power allocation to minimize the total power under the quality of service and secrecy constraints. We also consider the secrecy outage probability for different positions of eavesdropper. Simulation results are presented to show the performance of the proposed strategies.
2018-05-30
Price-Williams, M., Heard, N., Turcotte, M..  2017.  Detecting Periodic Subsequences in Cyber Security Data. 2017 European Intelligence and Security Informatics Conference (EISIC). :84–90.

Anomaly detection for cyber-security defence hasgarnered much attention in recent years providing an orthogonalapproach to traditional signature-based detection systems.Anomaly detection relies on building probability models ofnormal computer network behaviour and detecting deviationsfrom the model. Most data sets used for cyber-security havea mix of user-driven events and automated network events,which most often appears as polling behaviour. Separating theseautomated events from those caused by human activity is essentialto building good statistical models for anomaly detection. This articlepresents a changepoint detection framework for identifyingautomated network events appearing as periodic subsequences ofevent times. The opening event of each subsequence is interpretedas a human action which then generates an automated, periodicprocess. Difficulties arising from the presence of duplicate andmissing data are addressed. The methodology is demonstrated usingauthentication data from Los Alamos National Laboratory'senterprise computer network.

2018-05-24
Chadha, R., Sistla, A. P., Viswanathan, M..  2017.  Verification of Randomized Security Protocols. 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). :1–12.

We consider the problem of verifying the security of finitely many sessions of a protocol that tosses coins in addition to standard cryptographic primitives against a Dolev-Yao adversary. Two properties are investigated here - secrecy, which asks if no adversary interacting with a protocol P can determine a secret sec with probability textgreater 1 - p; and indistinguishability, which asks if the probability observing any sequence 0$øverline$ in P1 is the same as that of observing 0$øverline$ in P2, under the same adversary. Both secrecy and indistinguishability are known to be coNP-complete for non-randomized protocols. In contrast, we show that, for randomized protocols, secrecy and indistinguishability are both decidable in coNEXPTIME. We also prove a matching lower bound for the secrecy problem by reducing the non-satisfiability problem of monadic first order logic without equality.

2018-05-09
Fellmuth, J., Herber, P., Pfeffer, T. F., Glesner, S..  2017.  Securing Real-Time Cyber-Physical Systems Using WCET-Aware Artificial Diversity. 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :454–461.

Artificial software diversity is an effective way to prevent software vulnerabilities and errors to be exploited in code-reuse attacks. This is achieved by lowering the individual probability of a successful attack to a level that makes the attack unfeasible. Unfortunately, the existing approaches are not applicable to safety-critical real-time systems as they induce unacceptable performance overheads, they violate safety and timing guarantees, or they assume hardware resources which are typically not available in embedded systems. To overcome these problems, we propose a safe diversity approach that preserves the timing properties of real-time processes by controlling its impact on the worst case execution time (WCET). Our main idea is to use block-level diversity with a large, but fixed set of movable instruction sequences, and to use static WCET analysis to identify non-critical areas of code where it can safely be split into more movable instruction sequences.

Zhang, Xin, Si, Xujie, Naik, Mayur.  2017.  Combining the Logical and the Probabilistic in Program Analysis. Proceedings of the 1st ACM SIGPLAN International Workshop on Machine Learning and Programming Languages. :27–34.

Conventional program analyses have made great strides by leveraging logical reasoning. However, they cannot handle uncertain knowledge, and they lack the ability to learn and adapt. This in turn hinders the accuracy, scalability, and usability of program analysis tools in practice. We seek to address these limitations by proposing a methodology and framework for incorporating probabilistic reasoning directly into existing program analyses that are based on logical reasoning. We demonstrate that the combined approach can benefit a number of important applications of program analysis and thereby facilitate more widespread adoption of this technology.

2018-05-01
Halunen, Kimmo, Karinsalo, Anni.  2017.  Measuring the Value of Privacy and the Efficacy of PETs. Proceedings of the 11th European Conference on Software Architecture: Companion Proceedings. :132–135.
Privacy is a very active subject of research and also of debate in the political circles. In order to make good decisions about privacy, we need measurement systems for privacy. Most of the traditional measures such as k-anonymity lack expressiveness in many cases. We present a privacy measuring framework, which can be used to measure the value of privacy to an individual and also to evaluate the efficacy of privacy enhancing technologies. Our method is centered on a subject, whose privacy can be measured through the amount and value of information learned about the subject by some observers. This gives rise to interesting probabilistic models for the value of privacy and measures for privacy enhancing technologies.
2018-04-30
Halunen, Kimmo, Karinsalo, Anni.  2017.  Measuring the Value of Privacy and the Efficacy of PETs. Proceedings of the 11th European Conference on Software Architecture: Companion Proceedings. :132–135.

Privacy is a very active subject of research and also of debate in the political circles. In order to make good decisions about privacy, we need measurement systems for privacy. Most of the traditional measures such as k-anonymity lack expressiveness in many cases. We present a privacy measuring framework, which can be used to measure the value of privacy to an individual and also to evaluate the efficacy of privacy enhancing technologies. Our method is centered on a subject, whose privacy can be measured through the amount and value of information learned about the subject by some observers. This gives rise to interesting probabilistic models for the value of privacy and measures for privacy enhancing technologies.

2018-04-11
Ma, C., Guo, Y., Su, J..  2017.  A Multiple Paths Scheme with Labels for Key Distribution on Quantum Key Distribution Network. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :2513–2517.

This paper establishes a probability model of multiple paths scheme of quantum key distribution with public nodes among a set of paths which are used to transmit the key between the source node and the destination node. Then in order to be used in universal net topologies, combining with the key routing in the QKD network, the algorithm of the multiple paths scheme of key distribution we propose includes two major aspects: one is an approach which can confirm the number and the distance of the selection of paths, and the other is the strategy of stochastic paths with labels that can decrease the number of public nodes and avoid the phenomenon that the old scheme may produce loops and often get the nodes apart from the destination node father than current nodes. Finally, the paper demonstrates the rationality of the probability model and strategies about the algorithm.

Hossain, F. S., Yoneda, T., Shintani, M., Inoue, M., Orailoglo, A..  2017.  Intra-Die-Variation-Aware Side Channel Analysis for Hardware Trojan Detection. 2017 IEEE 26th Asian Test Symposium (ATS). :52–57.

High detection sensitivity in the presence of process variation is a key challenge for hardware Trojan detection through side channel analysis. In this work, we present an efficient Trojan detection approach in the presence of elevated process variations. The detection sensitivity is sharpened by 1) comparing power levels from neighboring regions within the same chip so that the two measured values exhibit a common trend in terms of process variation, and 2) generating test patterns that toggle each cell multiple times to increase Trojan activation probability. Detection sensitivity is analyzed and its effectiveness demonstrated by means of RPD (relative power difference). We evaluate our approach on ISCAS'89 and ITC'99 benchmarks and the AES-128 circuit for both combinational and sequential type Trojans. High detection sensitivity is demonstrated by analysis on RPD under a variety of process variation levels and experiments for Trojan inserted circuits.

2018-04-04
Wang, Q., Dai, H. N..  2017.  On modeling of eavesdropping behavior in underwater acoustic sensor networks. 2017 IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM). :1–3.

In this paper, we propose a theoretical framework to investigate the eavesdropping behavior in underwater acoustic sensor networks. In particular, we quantify the eavesdropping activities by the eavesdropping probability. Our derived results show that the eavesdropping probability heavily depends on acoustic signal frequency, underwater acoustic channel characteristics (such as spreading factor and wind speed) and different hydrophones (such as isotropic hydrophones and array hydrophones). Simulation results have further validate the effectiveness and the accuracy of our proposed model.

2018-04-02
Guan, X., Ma, Y., Hua, Y..  2017.  An Attack Intention Recognition Method Based on Evaluation Index System of Electric Power Information System. 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1544–1548.

With the increasing scale of the network, the power information system has many characteristics, such as large number of nodes, complicated structure, diverse network protocols and abundant data, which make the network intrusion detection system difficult to detect real alarms. The current security technologies cannot meet the actual power system network security operation and protection requirements. Based on the attacker ability, the vulnerability information and the existing security protection configuration, we construct the attack sub-graphs by using the parallel distributed computing method and combine them into the whole network attack graph. The vulnerability exploit degree, attacker knowledge, attack proficiency, attacker willingness and the confidence level of the attack evidence are used to construct the security evaluation index system of the power information network system to calculate the attack probability value of each node of the attack graph. According to the probability of occurrence of each node attack, the pre-order attack path will be formed and then the most likely attack path and attack targets will be got to achieve the identification of attack intent.

Mamun, A. Al, Salah, K., Al-maadeed, S., Sheltami, T. R..  2017.  BigCrypt for Big Data Encryption. 2017 Fourth International Conference on Software Defined Systems (SDS). :93–99.

as data size is growing up, cloud storage is becoming more familiar to store a significant amount of private information. Government and private organizations require transferring plenty of business files from one end to another. However, we will lose privacy if we exchange information without data encryption and communication mechanism security. To protect data from hacking, we can use Asymmetric encryption technique, but it has a key exchange problem. Although Asymmetric key encryption deals with the limitations of Symmetric key encryption it can only encrypt limited size of data which is not feasible for a large amount of data files. In this paper, we propose a probabilistic approach to Pretty Good Privacy technique for encrypting large-size data, named as ``BigCrypt'' where both Symmetric and Asymmetric key encryption are used. Our goal is to achieve zero tolerance security on a significant amount of data encryption. We have experimentally evaluated our technique under three different platforms.

Wu, D., Zhang, Y., Liu, Y..  2017.  Dummy Location Selection Scheme for K-Anonymity in Location Based Services. 2017 IEEE Trustcom/BigDataSE/ICESS. :441–448.

Location-Based Service (LBS) becomes increasingly important for our daily life. However, the localization information in the air is vulnerable to various attacks, which result in serious privacy concerns. To overcome this problem, we formulate a multi-objective optimization problem with considering both the query probability and the practical dummy location region. A low complexity dummy location selection scheme is proposed. We first find several candidate dummy locations with similar query probabilities. Among these selected candidates, a cloaking area based algorithm is then offered to find K - 1 dummy locations to achieve K-anonymity. The intersected area between two dummy locations is also derived to assist to determine the total cloaking area. Security analysis verifies the effectiveness of our scheme against the passive and active adversaries. Compared with other methods, simulation results show that the proposed dummy location scheme can improve the privacy level and enlarge the cloaking area simultaneously.

2018-03-19
Ditzler, G., Prater, A..  2017.  Fine Tuning Lasso in an Adversarial Environment against Gradient Attacks. 2017 IEEE Symposium Series on Computational Intelligence (SSCI). :1–7.

Machine learning and data mining algorithms typically assume that the training and testing data are sampled from the same fixed probability distribution; however, this violation is often violated in practice. The field of domain adaptation addresses the situation where this assumption of a fixed probability between the two domains is violated; however, the difference between the two domains (training/source and testing/target) may not be known a priori. There has been a recent thrust in addressing the problem of learning in the presence of an adversary, which we formulate as a problem of domain adaption to build a more robust classifier. This is because the overall security of classifiers and their preprocessing stages have been called into question with the recent findings of adversaries in a learning setting. Adversarial training (and testing) data pose a serious threat to scenarios where an attacker has the opportunity to ``poison'' the training or ``evade'' on the testing data set(s) in order to achieve something that is not in the best interest of the classifier. Recent work has begun to show the impact of adversarial data on several classifiers; however, the impact of the adversary on aspects related to preprocessing of data (i.e., dimensionality reduction or feature selection) has widely been ignored in the revamp of adversarial learning research. Furthermore, variable selection, which is a vital component to any data analysis, has been shown to be particularly susceptible under an attacker that has knowledge of the task. In this work, we explore avenues for learning resilient classification models in the adversarial learning setting by considering the effects of adversarial data and how to mitigate its effects through optimization. Our model forms a single convex optimization problem that uses the labeled training data from the source domain and known- weaknesses of the model for an adversarial component. We benchmark the proposed approach on synthetic data and show the trade-off between classification accuracy and skew-insensitive statistics.

Xu, D., Xiao, L., Mandayam, N. B., Poor, H. V..  2017.  Cumulative Prospect Theoretic Study of a Cloud Storage Defense Game against Advanced Persistent Threats. 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :541–546.

Cloud storage is vulnerable to advanced persistent threats (APTs), in which an attacker launches stealthy, continuous, well-funded and targeted attacks on storage devices. In this paper, cumulative prospect theory (CPT) is applied to study the interactions between a defender of cloud storage and an APT attacker when each of them makes subjective decisions to choose the scan interval and attack interval, respectively. Both the probability weighting effect and the framing effect are applied to model the deviation of subjective decisions of end-users from the objective decisions governed by expected utility theory, under uncertain attack durations. Cumulative decision weights are used to describe the probability weighting effect and the value distortion functions are used to represent the framing effect of subjective APT attackers and defenders in the CPT-based APT defense game, rather than discrete decision weights, as in earlier prospect theoretic study of APT defense. The Nash equilibria of the CPT-based APT defense game are derived, showing that a subjective attacker becomes risk-seeking if the frame of reference for evaluating the utility is large, and becomes risk-averse if the frame of reference for evaluating the utility is small.

2018-03-05
Baldi, M., Chiaraluce, F., Senigagliesi, L., Spalazzi, L., Spegni, F..  2017.  Security in Heterogeneous Distributed Storage Systems: A Practically Achievable Information-Theoretic Approach. 2017 IEEE Symposium on Computers and Communications (ISCC). :1021–1028.

Distributed storage systems and caching systems are becoming widespread, and this motivates the increasing interest on assessing their achievable performance in terms of reliability for legitimate users and security against malicious users. While the assessment of reliability takes benefit of the availability of well established metrics and tools, assessing security is more challenging. The classical cryptographic approach aims at estimating the computational effort for an attacker to break the system, and ensuring that it is far above any feasible amount. This has the limitation of depending on attack algorithms and advances in computing power. The information-theoretic approach instead exploits capacity measures to achieve unconditional security against attackers, but often does not provide practical recipes to reach such a condition. We propose a mixed cryptographic/information-theoretic approach with a twofold goal: estimating the levels of information-theoretic security and defining a practical scheme able to achieve them. In order to find optimal choices of the parameters of the proposed scheme, we exploit an effective probabilistic model checker, which allows us to overcome several limitations of more conventional methods.

2018-02-27
He, F., Rao, N. S. V., Ma, C. Y. T..  2017.  Game-Theoretic Analysis of System of Systems with Inherent Robustness Parameters. 2017 20th International Conference on Information Fusion (Fusion). :1–9.

Large-scale infrastructures are critical to economic and social development, and hence their continued performance and security are of high national importance. Such an infrastructure often is a system of systems, and its functionality critically depends on the inherent robustness of its constituent systems and its defense strategy for countering attacks. Additionally, interdependencies between the systems play another critical role in determining the infrastructure robustness specified by its survival probability. In this paper, we develop game-theoretic models between a defender and an attacker for a generic system of systems using inherent parameters and conditional survival probabilities that characterize the interdependencies. We derive Nash Equilibrium conditions for the cases of interdependent and independent systems of systems under sum-form utility functions. We derive expressions for the infrastructure survival probability that capture its dependence on cost and system parameters, and also on dependencies that are specified by conditional probabilities. We apply the results to cyber-physical systems which show the effects on system survival probability due to defense and attack intensities, inherent robustness, unit cost, target valuation, and interdependencies.

2018-02-21
Zheng, H., Zhang, X..  2017.  Optimizing Task Assignment with Minimum Cost on Heterogeneous Embedded Multicore Systems Considering Time Constraint. 2017 ieee 3rd international conference on big data security on cloud (bigdatasecurity), ieee international conference on high performance and smart computing (hpsc), and ieee international conference on intelligent data and security (ids). :225–230.
Time and cost are the most critical performance metrics for computer systems including embedded system, especially for the battery-based embedded systems, such as PC, mainframe computer, and smart phone. Most of the previous work focuses on saving energy in a deterministic way by taking the average or worst scenario into account. However, such deterministic approaches usually are inappropriate in modeling energy consumption because of uncertainties in conditional instructions on processors and time-varying external environments. Through studying the relationship between energy consumption, execution time and completion probability of tasks on heterogeneous multi-core architectures this paper proposes an optimal energy efficiency and system performance model and the OTHAP (Optimizing Task Heterogeneous Assignment with Probability) algorithm to address the Processor and Voltage Assignment with Probability (PVAP) problem of data-dependent aperiodic tasks in real-time embedded systems, ensuring that all the tasks can be done under the time constraint with areal-time embedded systems guaranteed probability. We adopt a task DAG (Directed Acyclic Graph) to model the PVAP problem. We first use a processor scheduling algorithm to map the task DAG onto a set of voltage-variable processors, and then use our dynamic programming algorithm to assign a proper voltage to each task and The experimental results demonstrate our approach outperforms state-of-the-art algorithms in this field (maximum improvement of 24.6%).
2018-02-06
Aksu, M. U., Dilek, M. H., Tatlı, E. İ, Bicakci, K., Dirik, H. İ, Demirezen, M. U., Aykır, T..  2017.  A Quantitative CVSS-Based Cyber Security Risk Assessment Methodology for IT Systems. 2017 International Carnahan Conference on Security Technology (ICCST). :1–8.

IT system risk assessments are indispensable due to increasing cyber threats within our ever-growing IT systems. Moreover, laws and regulations urge organizations to conduct risk assessments regularly. Even though there exist several risk management frameworks and methodologies, they are in general high level, not defining the risk metrics, risk metrics values and the detailed risk assessment formulas for different risk views. To address this need, we define a novel risk assessment methodology specific to IT systems. Our model is quantitative, both asset and vulnerability centric and defines low and high level risk metrics. High level risk metrics are defined in two general categories; base and attack graph-based. In our paper, we provide a detailed explanation of formulations in each category and make our implemented software publicly available for those who are interested in applying the proposed methodology to their IT systems.

2018-02-02
Zheng, T. X., Yang, Q., Wang, H. M., Deng, H., Mu, P., Zhang, W..  2017.  Improving physical layer security for wireless ad hoc networks via full-duplex receiver jamming. 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). :1–5.

This paper studies physical layer security in a wireless ad hoc network with numerous legitimate transmitter-receiver pairs and passive eavesdroppers. A hybrid full-/half-duplex receiver deployment strategy is proposed to secure legitimate transmissions, by letting a fraction of legitimate receivers work in the full-duplex (FD) mode sending jamming signals to confuse eavesdroppers upon their own information receptions, and other receivers work in the half-duplex mode just receiving desired signals. This paper aims to properly choose the fraction of the FD receivers to enhance network security. Tractable expressions for the connection outage probability and the secrecy outage probability of a typical legitimate link are first derived, based on which the network-wide secrecy throughput is maximized. Some insights into the optimal fraction are further developed. It is concluded that the fraction of the FD receivers triggers a non-trivial trade-off between reliability and secrecy, and the optimal fraction significantly improves the network security performance.

2017-12-27
Tutueva, A. V., Butusov, D. N., Pesterev, D. O., Belkin, D. A., Ryzhov, N. G..  2017.  Novel normalization technique for chaotic Pseudo-random number generators based on semi-implicit ODE solvers. 2017 International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT QM IS). :292–295.

The paper considers the general structure of Pseudo-random binary sequence generator based on the numerical solution of chaotic differential equations. The proposed generator architecture divides the generation process in two stages: numerical simulation of the chaotic system and converting the resulting sequence to a binary form. The new method of calculation of normalization factor is applied to the conversion of state variables values to the binary sequence. Numerical solution of chaotic ODEs is implemented using semi-implicit symmetric composition D-method. Experimental study considers Thomas and Rössler attractors as test chaotic systems. Properties verification for the output sequences of generators is carried out using correlation analysis methods and NIST statistical test suite. It is shown that output sequences of investigated generators have statistical and correlation characteristics that are specific for the random sequences. The obtained results can be used in cryptography applications as well as in secure communication systems design.

2017-12-20
Chen, G., Coon, J..  2017.  Enhancing secrecy by full-duplex antenna selection in cognitive networks. 2017 IEEE Symposium on Computers and Communications (ISCC). :540–545.

We consider an underlay cognitive network with secondary users that support full-duplex communication. In this context, we propose the application of antenna selection at the secondary destination node to improve the secondary user secrecy performance. Antenna selection rules for cases where exact and average knowledge of the eavesdropping channels are investigated. The secrecy outage probabilities for the secondary eavesdropping network are analyzed, and it is shown that the secrecy performance improvement due to antenna selection is due to coding gain rather than diversity gain. This is very different from classical antenna selection for data transmission, which usually leads to a higher diversity gain. Numerical simulations are included to verify the performance of the proposed scheme.

Azaman, M. A. bin, Nguyen, N. P., Ha, D. B., Truong, T. V..  2017.  Secrecy outage probability of full-duplex networks with cognitive radio environment and partial relay selection. 2017 International Conference on Recent Advances in Signal Processing, Telecommunications Computing (SigTelCom). :119–123.

This paper investigates the secrecy performance of full-duplex relay mode in underlay cognitive radio networks using decode-and-forward relay selection. The analytical results prove that full-duplex mode can guarantee security under critical conditions such as the bad residual self-interference and the presence of hi-tech eavesdropper. The secrecy outage probability is derived based on the statistical characteristics of channels in this considered system. The system is examined under five circumferences: 1) Different values of primary network's desired outage probability; 2) Different values of primary transmitter's transmit power; 3) Applying of multiple relays selection; 4) Systems undergo path-loss during the transmission process; 5) Systems undergo self-interference in relays. Simulation results are presented to verify the analysis.