Visible to the public Biblio

Filters: Keyword is MIMO communication  [Clear All Filters]
2022-12-20
Sliti, Maha.  2022.  MIMO Visible Light Communication System. 2022 27th Asia Pacific Conference on Communications (APCC). :538–543.
The expanding streaming culture of large amounts of data, as well as the requirement for faster and more reliable data transport systems, necessitates the development of innovative communication technologies such as Visible Light Communication (VLC). Nonetheless, incorporating VLC into next-generation networks is challenging due to technological restrictions such as air absorption, shadowing, and beam dispersion. One technique for addressing some of the challenges is to use the multiple input multiple output (MIMO) technique, which involves the simultaneous transmission of data from several sources, hence increasing data rate. In this work, the data transmission performance of the MIMO-VLC system is evaluated using a variety of factors such as distance from the source, data bit rate, and modulation method.
ISSN: 2163-0771
2022-10-16
Arfaoui, Amel, Kribeche, Ali, Senouci, Sidi Mohammed.  2020.  Cooperative MIMO for Adaptive Physical Layer Security in WBAN. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–7.
Internet of Things (IoT) is becoming an emerging paradigm to provide pervasive connectivity where “anything“ can be connected “anywhere” at “anytime” via massive deployment of physical objects like sensors, controllers, and actuators. However, the open nature of wireless communications and the energy constraint of the IoT devices impose strong security concerns. In this context, traditional cryptographic techniques may not be suitable in such a resource-constrained network. To address this problem, an effective security solution that ensures a trade-off between security effectiveness and energy efficiency is required. In this paper, we exploit cooperative transmission between sensor nodes in IoT for e-Health application, as a promising technique to enhance the physical layer security of wireless communications in terms of secrecy capacity while considering the resource-impoverished devices. Specifically, we propose a dynamic and cooperative virtual multiple-input and multiple-output (MIMO) configuration approach based on game theory to preserve the confidentiality of the transmitted messages with high energy savings. For this purpose, we model the physical layer security cooperation problem as a non-transferable coalition formation game. The set of cooperative devices form a virtual dynamically-configured MIMO network that is able to securely and efficiently transmit data to the destination. Simulation results show that the proposed game-based virtual MIMO configuration approach can improve the average secrecy capacity per device as well as the network lifetime compared to non-cooperative transmission.
2021-08-17
Tang, Jie, Xu, Aidong, Jiang, Yixin, Zhang, Yunan, Wen, Hong, Zhang, Tengyue.  2020.  Secret Key Attaches in MIMO IoT Communications by Using Self-injection Artificial Noise. 2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS). :225–229.
Internet of Things (IoT) enable information transmission and sharing among massive IoT devices. However, the key establishment and management in IoT become more challenging due to the low latency requirements and resource constrained IoT devices. In this work, we propose a practical physical layer based secret key sharing scheme for MIMO (multiple-input-multiple-output) IoT devices to reduce the communication delay caused by key establishment of MIMO IoT devices. This is because the proposed scheme attachs secret key sharing with communication simultaneously. It is achieved by the proposed MIMO self-injection AN (SAN) tranmsission, which is designed to deliberately maximum the receive SNR (signal to noise ratio) at different antenna of the legitimate IoT device, based on the value of secret key sharing to him. The simulation results verified the validity and security of the proposed scheme.
2021-06-30
Liu, Siqi, Liu, Shuangyue, Tang, Xizi, Guo, Mengqi, Lu, Yueming, Qiao, Yaojun.  2020.  QPSK-Assisted MIMO Equalization for 800-Gb/s/λ DP-256QAM Systems. 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC). :1—3.
A QPSK-assisted MIMO equalization is investigated to compensate bandwidth limitation for 800-Gb/s/λ DP-256QAM systems with only 25G-class optics. Compared with conventional MIMO equalization, the proposed equalization scheme exhibits 1.8-dB OSNR improvement at 15% FEC limit.
2021-02-10
Bendary, A., Koksal, C. E..  2020.  Order-Optimal Scaling of Covert Communication over MIMO AWGN Channels. 2020 IEEE Conference on Communications and Network Security (CNS). :1—9.
Covert communication, i.e., communication with a low probability of detection (LPD), has attracted a huge body of work. Recent studies have concluded that the maximal covert coding rate of the discrete memoryless channels and the additive white Gaussian noise (AWGN) channels is diminishing with the blocklength: the maximum information nats that can be transmitted covertly and reliably over such channels is only on the order of the square root of the blocklength. In this paper, we study covert communication over multiple-input multiple-output (MIMO) AWGN channels. We derive the order-optimal scaling law of the number of covert nats when the maximal covert coding rate of MIMO AWGN channels is diminishing with the blocklength. Furthermore, we provide a comparative discussion for the case in which secrecy and energy undetectability constraints are combined.
2020-09-21
Sámano-Robles, Ramiro.  2019.  MAC-PRY Cross-Layer Design for Secure Wireless Avionics Intra-Communications. 2019 Eighth International Conference on Emerging Security Technologies (EST). :1–7.
This paper presents a framework for medium access control (MAC) and physical (PRY) cross-layer security design of wireless avionics intra-communications (WAICs). The paper explores the different options based on the latest results of MAC-PRY cross-layer design and the available standard technologies for WAICs. Particular emphasis is given to solutions based on multiple-input multiple-output (MIMO) systems and recent developments towards a wireless technology with ultra-low latency and high reliability in the context of 5G and machine-type traffic support. One major objective is to improve WAICs technology and thus match the real-time, reliability and safety critical performance of the internal aeronautics bus technologies (e.g., ARINC 664). The main identified vulnerabilities and potential solutions are explored, as well as their impact on system design complexity and feasibility for wireless networks on-board aircraft. The solutions are presented in the context of the European project SCOTT (secure connected trustable things) using the recently released reference architecture for trusted IoT systems. Other aspects of SCOTT such as trust, privacy, security classes, and safety are also discussed here for the aeronautics domain.
Xia, Huiyun, Han, Shuai, Li, Cheng, Meng, Weixiao.  2019.  Joint PHY/MAC Layer AN-Assisted Security Scheme in SVD-Based MIMO HARQ system. 2019 IEEE/CIC International Conference on Communications in China (ICCC). :328–333.
With the explosive data growth arise from internet of things, how to ensure information security is facing unprecedented challenges. In this paper, a joint PHY/MAC layer security scheme with artificial noise design in singular value decomposition (SVD) based multiple input multiple output hybrid automatic retransmission request (MIMO HARQ) system is proposed to resolve the problem of low data rates in existing cross-layer security design and further adapt to the high data rate requirement of 5G. First, the SVD was applied to simplify MIMO systems into several parallel sub-channels employing HARQ protocol. Then, different from traditional null space based artificial noise design, the artificial noise design, which is dependent on the characteristics of channel states and transmission rounds, is detailed presented. Finally, the analytical and simulation results proved that with the help of the proposed artificial noise, both the information security and data rate performance can be significantly improved compared with that in single input single output (SISO) system.
2020-08-13
Jiang, Wei, Anton, Simon Duque, Dieter Schotten, Hans.  2019.  Intelligence Slicing: A Unified Framework to Integrate Artificial Intelligence into 5G Networks. 2019 12th IFIP Wireless and Mobile Networking Conference (WMNC). :227—232.
The fifth-generation and beyond mobile networks should support extremely high and diversified requirements from a wide variety of emerging applications. It is envisioned that more advanced radio transmission, resource allocation, and networking techniques are required to be developed. Fulfilling these tasks is challenging since network infrastructure becomes increasingly complicated and heterogeneous. One promising solution is to leverage the great potential of Artificial Intelligence (AI) technology, which has been explored to provide solutions ranging from channel prediction to autonomous network management, as well as network security. As of today, however, the state of the art of integrating AI into wireless networks is mainly limited to use a dedicated AI algorithm to tackle a specific problem. A unified framework that can make full use of AI capability to solve a wide variety of network problems is still an open issue. Hence, this paper will present the concept of intelligence slicing where an AI module is instantiated and deployed on demand. Intelligence slices are applied to conduct different intelligent tasks with the flexibility of accommodating arbitrary AI algorithms. Two example slices, i.e., neural network based channel prediction and anomaly detection based industrial network security, are illustrated to demonstrate this framework.
2020-08-10
Liao, Runfa, Wen, Hong, Pan, Fei, Song, Huanhuan, Xu, Aidong, Jiang, Yixin.  2019.  A Novel Physical Layer Authentication Method with Convolutional Neural Network. 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :231–235.
This paper investigates the physical layer (PHY-layer) authentication that exploits channel state information (CSI) to enhance multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system security by detecting spoofing attacks in wireless networks. A multi-user authentication system is proposed using convolutional neural networks (CNNs) which also can distinguish spoofers effectively. In addition, the mini batch scheme is used to train the neural networks and accelerate the training speed. Meanwhile, L1 regularization is adopted to prevent over-fitting and improve the authentication accuracy. The convolutional-neural-network-based (CNN-based) approach can authenticate legitimate users and detect attackers by CSIs with higher performances comparing to traditional hypothesis test based methods.
2020-07-03
Viegas, P., Borges, D., Montezuma, P., Dinis, R., Silva, M. M..  2019.  Multi-beam Physical Security Scheme: Security Assessment and Impact of Array Impairments on Security and Quality of Service. 2019 PhotonIcs Electromagnetics Research Symposium - Spring (PIERS-Spring). :2368—2375.

Massive multiple-input multiple-output (mMIMO) with perfect channel state information (CSI) can lead array power gain increments proportional to the number of antennas. Despite this fact constrains on power amplification still exist due to envelope variations of high order constellation signals. These constrains can be overpassed by a transmitter with several amplification branches, with each one associated to a component signal that results from the decomposition of a multilevel constellation as a sum of several quasi constant envelope signals that are sent independently. When combined with antenna arrays at the end of each amplification branch the security improves due to the energy separation achieved by beamforming. However, to avoid distortion on the signal resulting from the combination of all components at channel level all the beams of signal components should be directed in same direction. In such conditions it is crucial to assess the impact of misalignments between beams associated to each user, which is the purpose of this work. The set of results presented here show the good tolerance against misalignments of these transmission structures.

2020-06-15
Khadr, Monette H., Elgala, Hany, Ayyash, Moussa, Little, Thomas, Khreishah, Abdallah, Rahaim, Michael.  2018.  Security Aware Spatial Modulation (SA-SM). 2018 IEEE 39th Sarnoff Symposium. :1–6.
Multiple-input multiple-output (MIMO) techniques are currently the de facto approach for increasing the capacity and reliability of communication systems. Spatial modulation (SM) is presently one of the most eminent MIMO techniques. As, it combines the advantages of having higher spectral efficiency than repetition coding (RC) while overcoming the inter-channel interference (ICI) faced by spatial multiplexing (SMP). Moreover, SM reduces system complexity. In this paper, for the first time in literature, the use of MIMO techniques is explored in Internet-of-Things(IoT) deployments by introducing a novel technique called security aware spatial modulation (SA-SM).SA-SM provides a low complexity, secure and spectrally efficient technique that harvests the advantages of SM, while facing the arising security concerns of IoT systems. Using an undemanding modification at the receiver, SA-SM gives an extra degree of technology independent physical layer security. Our results show that SA-SM forces the bit-error-rate (BER) of an eavesdropper to not exceed the range of 10-2, which is below the forward-error-correction (FEC) threshold. Hence, it eradicates the ability of an eavesdropper to properly decode the transmitted signal. Additionally, the efficiency of SA-SM is verified in both the radio and visible light ranges. Furthermore, SA-SM is capable of reducing the peak-to-average-power-ratio (PAPR) by 26.2%.
2020-04-06
Ito, Keita, Masuda, Yoshihiro, Okamoto, Eiji.  2019.  A Chaos MIMO-Based Polar Concatenation Code for Secure Channel Coding. 2019 International Conference on Information Networking (ICOIN). :262—267.

For secure and high-quality wireless transmission, we propose a chaos multiple-input multiple-output (C-MIMO) transmission scheme, in which physical layer security and a channel coding effect with a coding rate of 1 are obtained by chaotic MIMO block modulation. In previous studies, we introduced a log-likelihood ratio (LLR) to C-MIMO to exploit LLR-based outer channel coding and turbo decoding, and obtained further coding gain. However, we only studied the concatenation of turbo code, low-density parity check (LDPC) code, and convolutional code which were relatively high-complexity or weak codes; thus, outer code having further low-complexity and strong error correction ability were expected. In particular, a transmission system with short and good code is required for control signaling, such as in 5G networks. Therefore, in this paper, we propose a polar code concatenation to C-MIMO, and introduce soft successive decoding (SCAD) and soft successive cancellation list decoding (SSCLD) as LLR-based turbo decoding for polar code. We numerically evaluate the bit error rate performance of the proposed scheme, and compare it to the conventional LDPC-concatenated transmission.

2019-02-08
Cao, R., Wong, T. F., Gao, H., Wang, D., Lu, Y..  2018.  Blind Channel Direction Separation Against Pilot Spoofing Attack in Massive MIMO System. 2018 26th European Signal Processing Conference (EUSIPCO). :2559-2563.

This paper considers a pilot spoofing attack scenario in a massive MIMO system. A malicious user tries to disturb the channel estimation process by sending interference symbols to the base-station (BS) via the uplink. Another legitimate user counters by sending random symbols. The BS does not possess any partial channel state information (CSI) and distribution of symbols sent by malicious user a priori. For such scenario, this paper aims to separate the channel directions from the legitimate and malicious users to the BS, respectively. A blind channel separation algorithm based on estimating the characteristic function of the distribution of the signal space vector is proposed. Simulation results show that the proposed algorithm provides good channel separation performance in a typical massive MIMO system.

2018-11-19
Wang, Y., Zhang, L..  2017.  High Security Orthogonal Factorized Channel Scrambling Scheme with Location Information Embedded for MIMO-Based VLC System. 2017 IEEE 85th Vehicular Technology Conference (VTC Spring). :1–5.
The broadcast nature of visible light beam has aroused great concerns about the privacy and confidentiality of visible light communication (VLC) systems.In this paper, in order to enhance the physical layer security, we propose a channel scrambling scheme, which realizes orthogonal factorized channel scrambling with location information embedded (OFCS-LIE) for the VLC systems. We firstly embed the location information of the legitimate user, including the transmission angle and the distance, into a location information embedded (LIE) matrix, then the LIE matrix is factorized orthogonally in order that the LIE matrix is approximately uncorrelated to the multiple-input, multiple-output (MIMO) channels by the iterative orthogonal factorization method, where the iteration number is determined based on the orthogonal error. The resultant OFCS-LIE matrix is approximately orthogonal and used to enhance both the reliability and the security of information transmission. Furthermore, we derive the information leakage at the eavesdropper and the secrecy capacity to analyze the system security. Simulations are performed, and the results demonstrate that with the aid of the OFCS-LIE scheme, MIMO-based VLC system has achieved higher security when compared with the counterpart scrambling scheme and the system without scrambling.
2018-06-07
Li, W., Liu, K., Wang, S., Lei, J., Li, E., Li, X..  2017.  Full-duplex relay for enhancing physical layer security in Wireless Sensor Networks: Optimal power allocation for minimizing secrecy outage probability. 2017 IEEE 17th International Conference on Communication Technology (ICCT). :906–910.
In this paper, we address the physical layer security problem for Wireless Sensor Networks in the presence of passive eavesdroppers, i.e., the eavesdroppers' channels are unknown to the transmitter. We use a multi-antenna relay to guarantee physical layer security. Different from the existing work, we consider that the relay works in full duplex mode and transmits artificial noise (AN) in both stages of the decode-and-forward (DF) cooperative strategy. We proposed two optimal power allocation strategies for power constrained and power unconstrained systems respectively. For power constrained system, our aim is to minimize the secrecy rate outage probability. And for power unconstrained systems, we obtain the optimal power allocation to minimize the total power under the quality of service and secrecy constraints. We also consider the secrecy outage probability for different positions of eavesdropper. Simulation results are presented to show the performance of the proposed strategies.
2018-01-10
Zhang, Z. G., Wen, H., Song, H. H., Jiang, Yixin, Zhang, J. L., Zhu, Xiping.  2016.  A MIMO cross-layer secure communication scheme based on spatial modulation. 2016 IEEE Conference on Communications and Network Security (CNS). :350–351.

A cross-layer secure communication scheme for multiple input multiple output (MIMO) system based on spatial modulation (SM) is proposed in this paper. The proposed scheme combined the upper layer stream cipher with the distorted signal design of the MIMO spatial modulation system in the physical layer to realize the security information transmission, which is called cross-layer secure communication system. Simulation results indicate that the novel scheme not only further ensure the legitimate user an ideal reception demodulation performance as the original system, but also make the eavesdropper' error rate stable at 0.5. The novel system do not suffer from a significant increasing complexity.

Chen, W., Hong, L., Shetty, S., Lo, D., Cooper, R..  2016.  Cross-Layered Security Approach with Compromised Nodes Detection in Cooperative Sensor Networks. 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). :499–508.

Cooperative MIMO communication is a promising technology which enables realistic solution for improving communication performance with MIMO technique in wireless networks that are composed of size and cost constrained devices. However, the security problems inherent to cooperative communication also arise. Cryptography can ensure the confidentiality in the communication and routing between authorized participants, but it usually cannot prevent the attacks from compromised nodes which may corrupt communications by sending garbled signals. In this paper, we propose a cross-layered approach to enhance the security in query-based cooperative MIMO sensor networks. The approach combines efficient cryptographic technique implemented in upper layer with a novel information theory based compromised nodes detection algorithm in physical layer. In the detection algorithm, a cluster of K cooperative nodes are used to identify up to K - 1 active compromised nodes. When the compromised nodes are detected, the key revocation is performed to isolate the compromised nodes and reconfigure the cooperative MIMO sensor network. During this process, beamforming is used to avoid the information leaking. The proposed security scheme can be easily modified and applied to cognitive radio networks. Simulation results show that the proposed algorithm for compromised nodes detection is effective and efficient, and the accuracy of received information is significantly improved.

2017-11-20
Li, Guyue, Hu, Aiqun.  2016.  Virtual MIMO-based cooperative beamforming and jamming scheme for the clustered wireless sensor network security. 2016 2nd IEEE International Conference on Computer and Communications (ICCC). :2246–2250.

This paper considers the physical layer security for the cluster-based cooperative wireless sensor networks (WSNs), where each node is equipped with a single antenna and sensor nodes cooperate at each cluster of the network to form a virtual multi-input multi-output (MIMO) communication architecture. We propose a joint cooperative beamforming and jamming scheme to enhance the security of the WSNs where a part of sensor nodes in Alice's cluster are deployed to transmit beamforming signals to Bob while a part of sensor nodes in Bob's cluster are utilized to jam Eve with artificial noise. The optimization of beamforming and jamming vectors to minimize total energy consumption satisfying the quality-of-service (QoS) constraints is a NP-hard problem. Fortunately, through reformulation, the problem is proved to be a quadratically constrained quadratic problem (QCQP) which can be solved by solving constraint integer programs (SCIP) algorithm. Finally, we give the simulation results of our proposed scheme.

2017-02-21
M. B. Amin, W. Zirwas, M. Haardt.  2015.  "Advanced channel prediction concepts for 5G radio systems". 2015 International Symposium on Wireless Communication Systems (ISWCS). :166-170.

Massive MIMO and tight cooperation between transmission nodes are expected to become an integral part of a future 5G radio system. As part of an overall interference mitigation scheme substantial gains in coverage, spectral as well as energy efficiency have been reported. One of the main limitations for massive MIMO and coordinated multi-point (CoMP) systems is the aging of the channel state information at the transmitter (CSIT), which can be overcome partly by state of the art channel prediction techniques. For a clean slate 5G radio system, we propose to integrate channel prediction from the scratch in a flexible manner to benefit from future improvements in this area. As any prediction is unreliable by nature, further improvements over the state of the art are needed for a convincing solution. In this paper, we explain how the basic ingredients of 5G like base stations with massive MIMO antenna arrays, and multiple UE antennas can help to stretch today's limits with an approximately 10 dB lower normalized mean square error (NMSE) of the predicted channel. In combination with the novel introduced concept of artificially mutually coupled antennas, adding super-directivity gains to virtual beamforming, robust and accurate prediction over 10 ms with an NMSE of -20 dB up to 15 km/h at 2.6 GHz RF frequency could be achieved. This result has been achieved for measured channels without massive MIMO, but a comparison with ray-traced channels for the same scenario is provided as well.

2017-02-14
K. S. Vishvaksenan, K. Mithra.  2015.  "Performance of coded Joint transmit scheme aided MIMO-IDMA system for secured medical image transmission". 2015 International Conference on Communications and Signal Processing (ICCSP). :0799-0803.

In this paper, we investigate the performance of multiple-input multiple-output aided coded interleave division multiple access (IDMA) system for secured medical image transmission through wireless communication. We realize the MIMO profile using four transmit antennas at the base station and three receive antennas at the mobile station. We achieve bandwidth efficiency using discrete wavelet transform (DWT). Further we implement Arnold's Cat Map (ACM) encryption algorithm for secured medical transmission. We consider celulas as medical image which is used to differentiate between normal cell and carcinogenic cell. In order to accommodate more users' image, we consider IDMA as accessing scheme. At the mobile station (MS), we employ non-linear minimum mean square error (MMSE) detection algorithm to alleviate the effects of unwanted multiple users image information and multi-stream interference (MSI) in the context of downlink transmission. In particular, we investigate the effects of three types of delay-spread distributions pertaining to Stanford university interim (SUI) channel models for encrypted image transmission of MIMO-IDMA system. From our computer simulation, we reveal that DWT based coded MIMO- IDMA system with ACM provides superior picture quality in the context of DL communication while offering higher spectral efficiency and security.

R. Saravanan, V. Saminadan, V. Thirunavukkarasu.  2015.  "VLSI implementation of BER measurement for wireless communication system". 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS). :1-5.

This paper presents the Bit Error Rate (BER) performance of the wireless communication system. The complexity of modern wireless communication system are increasing at fast pace. It becomes challenging to design the hardware of wireless system. The proposed system consists of MIMO transmitter and MIMO receiver along with the along with a realistic fading channel. To make the data transmission more secure when the data are passed into channel Crypto-System with Embedded Error Control (CSEEC) is used. The system supports data security and reliability using forward error correction codes (FEC). Security is provided through the use of a new symmetric encryption algorithm, and reliability is provided by the use of FEC codes. The system aims at speeding up the encryption and encoding operations and reduces the hardware dedicated to each of these operations. The proposed system allows users to achieve more security and reliable communication. The proposed BER measurement communication system consumes low power compared to existing systems. Advantage of VLSI based BER measurement it that they can be used in the Real time applications and it provides single chip solution.

2017-02-13
H. Taha, E. Alsusa.  2015.  "A MIMO Precoding Based Physical Layer Security Technique for Key Exchange Encryption". 2015 IEEE 81st Vehicular Technology Conference (VTC Spring). :1-5.

Secret key establishment is considered to be one of the main challenging issues in cryptography. Many security algorithms are implemented in practice using complicated mathematical methods to exchange secret keys, but those methods are not desirable in power limited terminals such as cellular and sensor networks. In this paper, we propose a physical layer method for exchanging secret key bits in precoding based multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. The proposed method uniquely relates the key bits to the indices of the precoding matrix used for MIMO channel precoding. The basic idea of the technique is to utilize a MIMO-OFDM precoding codebook. Comparative analysis with respect to the average number of mismatch bits, named key error rate (KER), shows an interesting lead for the new method relative to existing work. In addition, it will be shown that the proposed technique requires lower computation per byte per secret key.

2015-05-05
Aiyetoro, G., Takawira, F..  2014.  A Cross-layer Based Packet Scheduling Scheme for Multimedia Traffic in Satellite LTE Networks. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-6.

This paper proposes a new cross-layer based packet scheduling scheme for multimedia traffic in satellite Long Term Evolution (LTE) network which adopts MIMO technology. The Satellite LTE air interface will provide global coverage and hence complement its terrestrial counterpart in the provision of mobile services (especially multimedia services) to users across the globe. A dynamic packet scheduling scheme is very important towards actualizing an effective utilization of the limited available resources in satellite LTE networks without compromise to the Quality of Service (QoS) demands of multimedia traffic. Hence, the need for an effective packet scheduling algorithm cannot be overemphasized. The aim of this paper is to propose a new scheduling algorithm tagged Cross-layer Based Queue-Aware (CBQA) Scheduler that will provide a good trade-off among QoS, fairness and throughput. The newly proposed scheduler is compared to existing ones through simulations and various performance indices have been used. A land mobile dual-polarized GEO satellite system has been considered for this work.
 

Jie Tang, Huan Huan Song, Fei Pan, Hong Wen, Bin Wu, Yixin Jiang, Xiaobin Guo, Zhen Chen.  2014.  A MIMO cross-layer precoding security communication system. Communications and Network Security (CNS), 2014 IEEE Conference on. :500-501.

This paper proposed a MIMO cross-layer precoding secure communications via pattern controlled by higher layer cryptography. By contrast to physical layer security system, the proposed scheme could enhance the security in adverse situations where the physical layer security hardly to be deal with. Two One typical situation is considered. One is that the attackers have the ideal CSI and another is eavesdropper's channel are highly correlated to legitimate channel. Our scheme integrates the upper layer with physical layer secure together to gaurantee the security in real communication system. Extensive theoretical analysis and simulations are conducted to demonstrate its effectiveness. The proposed method is feasible to spread in many other communicate scenarios.
 

Di Renzo, M., Haas, H., Ghrayeb, A., Sugiura, S., Hanzo, L..  2014.  Spatial Modulation for Generalized MIMO: Challenges, Opportunities, and Implementation. Proceedings of the IEEE. 102:56-103.

A key challenge of future mobile communication research is to strike an attractive compromise between wireless network's area spectral efficiency and energy efficiency. This necessitates a clean-slate approach to wireless system design, embracing the rich body of existing knowledge, especially on multiple-input-multiple-ouput (MIMO) technologies. This motivates the proposal of an emerging wireless communications concept conceived for single-radio-frequency (RF) large-scale MIMO communications, which is termed as SM. The concept of SM has established itself as a beneficial transmission paradigm, subsuming numerous members of the MIMO system family. The research of SM has reached sufficient maturity to motivate its comparison to state-of-the-art MIMO communications, as well as to inspire its application to other emerging wireless systems such as relay-aided, cooperative, small-cell, optical wireless, and power-efficient communications. Furthermore, it has received sufficient research attention to be implemented in testbeds, and it holds the promise of stimulating further vigorous interdisciplinary research in the years to come. This tutorial paper is intended to offer a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges leading to the analysis of the technological issues associated with the implementation of SM-MIMO. The paper is concluded with the description of the world's first experimental activities in this vibrant research field.