Biblio
CP-ABE (Ciphertext-policy attribute based encryption) is considered as a secure access control for data sharing. However, the SK(secret key) in most CP-ABE scheme is generated by Centralized authority(CA). It could lead to the high cost of building trust and single point of failure. Because of the characters of blockchain, some schemes based on blockchain have been proposed to prevent the disclosure and protect privacy of users' attribute. Thus, a new CP-ABE identity-attribute management(IAM) data sharing scheme is proposed based on blockchain, i.e. IAM-BDSS, to guarantee privacy through the hidden policy and attribute. Meanwhile, we define a transaction structure to ensure the auditability of parameter transmission on blockchain system. The experimental results and security analysis show that our IAM-BDSS is effective and feasible.
Blockchain technology is a decentralized ledger of all transactions across peer to peer network. Being decentralized in nature, a blockchain is highly secure as no single user can alter or remove an entry in the blockchain. The security of office premises and data is a very major concern for any organization. This paper majorly focuses on its application of blockchain technology in security surveillance. This paper proposes a blockchain based multi level network model for security surveillance system. The proposed system architecture is composed of different blockchain based systems connected to a multi level decentralized blockchain system to insure authentication, secure storage, Integrity and accountability.
In this paper we consider the threat surface and security of air gapped wallet schemes for permissioned blockchains as preparation for a Markov based mathematical model, and quantify the risk associated with private key leakage. We identify existing threats to the wallet scheme and existing work done to both attack and secure the scheme. We provide an overview the proposed model and outline justification for our methods. We follow with next steps in our remaining work and the overarching goals and motivation for our methods.
Witnessing the increasingly pervasive deployment of security video surveillance systems(VSS), more and more individuals have become concerned with the issues of privacy violations. While the majority of the public have a favorable view of surveillance in terms of crime deterrence, individuals do not accept the invasive monitoring of their private life. To date, however, there is not a lightweight and secure privacy-preserving solution for video surveillance systems. The recent success of blockchain (BC) technologies and their applications in the Internet of Things (IoT) shed a light on this challenging issue. In this paper, we propose a Lightweight, Blockchain-based Privacy protection (Lib-Pri) scheme for surveillance cameras at the edge. It enables the VSS to perform surveillance without compromising the privacy of people captured in the videos. The Lib-Pri system transforms the deployed VSS into a system that functions as a federated blockchain network capable of carrying out integrity checking, blurring keys management, feature sharing, and video access sanctioning. The policy-based enforcement of privacy measures is carried out at the edge devices for real-time video analytics without cluttering the network.
Blockchain is a powerful and distributed platform for transactions which require a unified, resilient, transparent and consensus-based record keeping system. It has been applied to scenarios like smart city, supply chain, medical data storing and sharing, and etc. Many works have been done on improving the performance and security of such systems. However, there is a lack of the mechanism of identity binding when a human being is involved in corresponding physical world, i.e., if one is involved in an activity, his/her identity in the real world should be correctly reflected in the blockchain system. To mitigate this gap, we propose BlockID, a novel framework for people identity management that leverages biometric authentication and trusted computing technology. We also develop a prototype to demonstrate its feasibility in practice.
In a consensus algorithm based on Proof-of-Work, miners are motivated by crypto rewards. Furthermore, security is guaranteed because a cost of a 50% attack chance is higher than the potential rewards. However, because of the sudden price jump of cryptocurrencies and cheap prices of mining machines like ASICs, the cost and profit were on equilibrium for Bitcoin in 2017. In this situation, attackers are motivated by the balance between hash power and profits. In this paper, we describe that there is relevance between mining power on the network and price of tokens that can be taken securely on a blockchain. Users who exchange tokens on the PoW blockchain should monitor mining power and exchange tokens cheaper than the attack cost so that profit and cost of the attacker are not in equilibrium.
Blockchain technology has been increasingly used for decentralizing cloud-based Internet of Things (IoT) architectures to address some limitations faced by centralized systems. While many existing efforts are successful in leveraging blockchain for decentralization with multiple servers (full nodes) to handle faulty nodes, an important issue has arisen that external clients (also called lightweight clients) have to rely on a relay node to communicate with the full nodes in the blockchain. Compromization of such relay nodes may result in a security breach and even a blockage of IoT sensors from the network. We propose censorship resistant decentralized IoT management systems, which include a "diffusion" function to deliver all messages from sensors to all full nodes and an augmented consensus protocol to check data loss, replicate processing outcome, and facilitate opportunistic outcome delivery. We also leverage the cryptographic tool of aggregate signature to reduce the complexity of communication and signature verification.