Visible to the public Biblio

Filters: Keyword is blockchain security  [Clear All Filters]
2019-04-01
Di Pietro, Roberto, Salleras, Xavier, Signorini, Matteo, Waisbard, Erez.  2018.  A Blockchain-based Trust System for the Internet of Things. Proceedings of the 23Nd ACM on Symposium on Access Control Models and Technologies. :77–83.

One of the biggest challenges for the Internet of Things (IoT) is to bridge the currently fragmented trust domains. The traditional PKI model relies on a common root of trust and does not fit well with the heterogeneous IoT ecosystem where constrained devices belong to independent administrative domains. In this work we describe a distributed trust model for the IoT that leverages the existing trust domains and bridges them to create end-to-end trust between IoT devices without relying on any common root of trust. Furthermore we define a new cryptographic primitive, denoted as obligation chain designed as a credit-based Blockchain with a built-in reputation mechanism. Its innovative design enables a wide range of use cases and business models that are simply not possible with current Blockchain-based solutions while not experiencing traditional blockchain delays. We provide a security analysis for both the obligation chain and the overall architecture and provide experimental tests that show its viability and quality.

Duong, Tuyet, Chepurnoy, Alexander, Zhou, Hong-Sheng.  2018.  Multi-mode Cryptocurrency Systems. Proceedings of the 2Nd ACM Workshop on Blockchains, Cryptocurrencies, and Contracts. :35–46.

In the past years, the security of Bitcoin-like protocols has been intensively studied. However, previous investigations are mainly focused on the single-mode version of Bitcoin protocol, where the protocol is running among full nodes (miners). In this paper we initiate the study of multi-mode cryptocurrency protocols. We generalize the recent framework by Garay et al (Eurocrypt 2015) with new security de nitions that capture the security of realistic cryptocurrency systems. e.g. Bitcoin with full and lightweight nodes. As an immediate application of our new framework, we analyze the security of existing blockchain pruning proposals for Bitcoin and Ethereum aiming to improve the storage e ciency of network nodes by pruning unnecessary information from the ledger.

Kiffer, Lucianna, Rajaraman, Rajmohan, shelat, abhi.  2018.  A Better Method to Analyze Blockchain Consistency. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :729–744.

The celebrated Nakamoto consensus protocol [16] ushered in several new consensus applications including cryptocurrencies. A few recent works [7, 17] have analyzed important properties of blockchains, including most significantly, consistency, which is a guarantee that all honest parties output the same sequence of blocks throughout the execution of the protocol. To establish consistency, the prior analysis of Pass, Seeman and Shelat [17] required a careful counting of certain combinatorial events that was difficult to apply to variations of Nakamoto. The work of Garay, Kiayas, and Leonardas [7] provides another method of analyzing the blockchain under the simplifying assumption that the network was synchronous. The contribution of this paper is the development of a simple Markov-chain based method for analyzing consistency properties of blockchain protocols. The method includes a formal way of stating strong concentration bounds as well as easy ways to concretely compute the bounds. We use our new method to answer a number of basic questions about consistency of blockchains: Our new analysis provides a tighter guarantee on the consistency property of Nakamoto's protocol, including for parameter regimes which [17] could not consider; We analyze a family of delaying attacks first presented in [17], and extend them to other protocols; We analyze how long a participant should wait before considering a high-value transaction "confirmed"; We analyze the consistency of CliqueChain, a variation of the Chainweb [14] system; We provide the first rigorous consistency analysis of GHOST [20] and also analyze a folklore "balancing"-attack. In each case, we use our framework to experimentally analyze the consensus bounds for various network delay parameters and adversarial computing percentages. We hope our techniques enable authors of future blockchain proposals to provide a more rigorous analysis of their schemes.

Xu, L., Chen, L., Gao, Z., Chang, Y., Iakovou, E., Shi, W..  2018.  Binding the Physical and Cyber Worlds: A Blockchain Approach for Cargo Supply Chain Security Enhancement. 2018 IEEE International Symposium on Technologies for Homeland Security (HST). :1–5.

Maritime transportation plays a critical role for the U.S. and global economies, and has evolved into a complex system that involves a plethora of supply chain stakeholders spread around the globe. The inherent complexity brings huge security challenges including cargo loss and high burdens in cargo inspection against illicit activities and potential terrorist attacks. The emerging blockchain technology provides a promising tool to build a unified maritime cargo tracking system critical for cargo security. However, most existing efforts focus on transportation data itself, while ignoring how to bind the physical cargo movements and information managed by the system consistently. This can severely undermine the effectiveness of securing cargo transportation. To fulfill this gap, we propose a binding scheme leveraging a novel digital identity management mechanism. The digital identity management mechanism maps the best practice in the physical world to the cyber world and can be seamlessly integrated with a blockchain-based cargo management system.

Zhang, X., Li, R., Cui, B..  2018.  A security architecture of VANET based on blockchain and mobile edge computing. 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN). :258–259.

The development of Vehicular Ad-hoc NETwork (VANET) has brought many conveniences to human beings, but also brings a very prominent security problem. The traditional solution to the security problem is based on centralized approach which requires a trusted central entity which exists a single point of failure problem. Moreover, there is no approach of technical level to ensure security of data. Therefore, this paper proposes a security architecture of VANET based on blockchain and mobile edge computing. The architecture includes three layers, namely perception layer, edge computing layer and service layer. The perception layer ensures the security of VANET data in the transmission process through the blockchain technology. The edge computing layer provides computing resources and edge cloud services to the perception layer. The service layer uses the combination of traditional cloud storage and blockchain to ensure the security of data.

Wang, R., He, J., Liu, C., Li, Q., Tsai, W., Deng, E..  2018.  A Privacy-Aware PKI System Based on Permissioned Blockchains. 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS). :928–931.

Public key infrastructure (PKI) is the foundation and core of network security construction. Blockchain (BC) has many technical characteristics, such as decentralization, impossibility of being tampered with and forged, which makes it have incomparable advantages in ensuring information credibility, security, traceability and other aspects of traditional technology. In this paper, a method of constructing PKI certificate system based on permissioned BC is proposed. The problems of multi-CA mutual trust, poor certificate configuration efficiency and single point failure in digital certificate system are solved by using the characteristics of BC distribution and non-tampering. At the same time, in order to solve the problem of identity privacy on BC, this paper proposes a privacy-aware PKI system based on permissioned BCs. This system is an anonymous digital certificate publishing scheme., which achieves the separation of user registration and authorization, and has the characteristics of anonymity and conditional traceability, so as to realize to protect user's identity privacy. The system meets the requirements of certificate security and anonymity, reduces the cost of CA construction, operation and maintenance in traditional PKI technology, and improves the efficiency of certificate application and configuration.

Urien, P..  2018.  Blockchain IoT (BIoT): A New Direction for Solving Internet of Things Security and Trust Issues. 2018 3rd Cloudification of the Internet of Things (CIoT). :1–4.

The Blockchain is an emerging paradigm that could solve security and trust issues for Internet of Things (IoT) platforms. We recently introduced in an IETF draft (“Blockchain Transaction Protocol for Constraint Nodes”) the BIoT paradigm, whose main idea is to insert sensor data in blockchain transactions. Because objects are not logically connected to blockchain platforms, controller entities forward all information needed for transaction forgery. Never less in order to generate cryptographic signatures, object needs some trusted computing resources. In previous papers we proposed the Four-Quater Architecture integrating general purpose unit (GPU), radio SoC, sensors/actuators and secure elements including TLS/DTLS stacks. These secure microcontrollers also manage crypto libraries required for blockchain operation. The BIoT concept has four main benefits: publication/duplication of sensors data in public and distributed ledgers, time stamping by the blockchain infrastructure, data authentication, and non repudiation.

2019-02-18
Hepp, Thomas, Wortner, Patrick, Schönhals, Alexander, Gipp, Bela.  2018.  Securing Physical Assets on the Blockchain: Linking a Novel Object Identification Concept with Distributed Ledgers. Proceedings of the 1st Workshop on Cryptocurrencies and Blockchains for Distributed Systems. :60–65.

The use of blockchain technology to track physical assets is not new. However, the state of the art concepts are not applicable due to several limitations. One limitation is the scalability of blockchains with regard to the number of transactions that can be processed by the network. The well-established technology in tracking products is based on RFID chips that can be cloned. This paper provides insights into how objects can be protected and monitored by a varnish with a unique crack pattern, as an example of a Physical Unclonable Function. The perceptual hash of the unique pattern is used to encrypt the associated data to ensure privacy. Instead of logging each event on the blockchain individually, which is not possible due to the limited transaction throughput, OriginStamp is used to preserve data integrity on the blockchain. OriginStamp aggregates events, combines them through hashing and embeds this hash into a Bitcoin transaction. Once the Bitcoin network mines the transaction into a block and confirms it, the timestamp is considered as immutable proof of existence. With this approach, the integrity of tracking data cannot be contested. In the future, the craquelure-based tracking approach could be extended to supply chain integration to secure the origin of products, including prevention of counterfeiting, securing the place of manufacture for trademark law or state surveillance of the agricultural economy.

2018-08-23
Yue, L., Junqin, H., Shengzhi, Q., Ruijin, W..  2017.  Big Data Model of Security Sharing Based on Blockchain. 2017 3rd International Conference on Big Data Computing and Communications (BIGCOM). :117–121.

The rise of big data age in the Internet has led to the explosive growth of data size. However, trust issue has become the biggest problem of big data, leading to the difficulty in data safe circulation and industry development. The blockchain technology provides a new solution to this problem by combining non-tampering, traceable features with smart contracts that automatically execute default instructions. In this paper, we present a credible big data sharing model based on blockchain technology and smart contract to ensure the safe circulation of data resources.

Matsuo, S..  2017.  How formal analysis and verification add security to blockchain-based systems. 2017 Formal Methods in Computer Aided Design (FMCAD). :1–4.

Blockchain is an integrated technology to ensure keeping record and process transactions with decentralized manner. It is thought as the foundation of future decentralized ecosystem, and collects much attention. However, the maturity of this technology including security of the fundamental protocol and its applications is not enough, thus we need more research on the security evaluation and verification of Blockchain technology This tutorial explains the current status of the security of this technology, its security layers and possibility of application of formal analysis and verification.

Xu, D., Xiao, L., Sun, L., Lei, M..  2017.  Game theoretic study on blockchain based secure edge networks. 2017 IEEE/CIC International Conference on Communications in China (ICCC). :1–5.

Blockchain has been applied to study data privacy and network security recently. In this paper, we propose a punishment scheme based on the action record on the blockchain to suppress the attack motivation of the edge servers and the mobile devices in the edge network. The interactions between a mobile device and an edge server are formulated as a blockchain security game, in which the mobile device sends a request to the server to obtain real-time service or launches attacks against the server for illegal security gains, and the server chooses to perform the request from the device or attack it. The Nash equilibria (NEs) of the game are derived and the conditions that each NE exists are provided to disclose how the punishment scheme impacts the adversary behaviors of the mobile device and the edge server.

Lycklama à Nijeholt, Hidde, Oudejans, Joris, Erkin, Zekeriya.  2017.  DecReg: A Framework for Preventing Double-Financing Using Blockchain Technology. Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts. :29–34.

Factoring is an important financial instrument for SMEs to solve liquidity problems, where the invoice is cashed to avoid late buyer payments. Unfortunately, this business model is risky as it relies on human interaction and involved actors (factors in particular) suffer from information asymmetry. One of the risks involved is 'double-financing': the event that an SME extracts funds from multiple factors. To reduce this asymmetry and increase the scalability of this important instrument, we propose a framework, DecReg, based on blockchain technology. We provide the protocols designed for this framework and present performance analysis. This framework will be deployed in practice as of February 2017 in the Netherlands.

Svetinovic, Davor.  2017.  Blockchain Engineering for the Internet of Things: Systems Security Perspective. Proceedings of the 3rd ACM International Workshop on IoT Privacy, Trust, and Security. :1–1.
The Internet of Things (IoT) technology has a potential to bring the benefits of intelligently interconnecting not just computers and humans, but most of everyday things. IoT has a promise of opening significant business process improvement opportunities leading to economic growth and cost reductions. However, there are many challenges facing IoT, including significant scalability and security challenges due to the integration of potentially huge number of things into the network. Many of scalability and security issues stem from a centralized, primarily client/server, architecture of IoT systems and frameworks. Blockchain technology, as a relativelly new approach to decentralized computation and assets management and transfer, has a potential to help solve a number of scalability and security issues that IoT is facing, primarilly through the removal of centralized points of failure for such systems. As such, blockchain technology and IoT integration provides a promising direction and it has recently generated significant research interest, e.g., [4]. In this talk, we present our experiences based on our recent project in enhancing security and privacy in decentralized energy trading in smart grids using blockchain, multi-signatures and anonymous messaging streams [1], that has built upon our previous work on Bitcoin-based decentralized carbon emissions trading infrastructure model [2]. In particular, we present the blockchain systems security issues within the context of IoT security and privacy requirements [3]. This is done with the intention of producing an early integrated security model for blockchain-powered IoT systems [5]. The presentation is constrained to the discussion of the architecture-level requirements [6]. Finally, we will present the main opportunity loss if the integration ignores the full realization of the real-world asset transaction paradigm.
Dorri, Ali, Kanhere, Salil S., Jurdak, Raja.  2017.  Towards an Optimized BlockChain for IoT. Proceedings of the Second International Conference on Internet-of-Things Design and Implementation. :173–178.

There has been increasing interest in adopting BlockChain (BC), that underpins the crypto-currency Bitcoin, in Internet of Things (IoT) for security and privacy. However, BCs are computationally expensive and involve high bandwidth overhead and delays, which are not suitable for most IoT devices. This paper proposes a lightweight BC-based architecture for IoT that virtually eliminates the overheads of classic BC, while maintaining most of its security and privacy benefits. IoT devices benefit from a private immutable ledger, that acts similar to BC but is managed centrally, to optimize energy consumption. High resource devices create an overlay network to implement a publicly accessible distributed BC that ensures end-to-end security and privacy. The proposed architecture uses distributed trust to reduce the block validation processing time. We explore our approach in a smart home setting as a representative case study for broader IoT applications. Qualitative evaluation of the architecture under common threat models highlights its effectiveness in providing security and privacy for IoT applications. Simulations demonstrate that our method decreases packet and processing overhead significantly compared to the BC implementation used in Bitcoin.

2018-05-24
Tosh, D. K., Shetty, S., Liang, X., Kamhoua, C. A., Kwiat, K. A., Njilla, L..  2017.  Security Implications of Blockchain Cloud with Analysis of Block Withholding Attack. 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). :458–467.

The blockchain technology has emerged as an attractive solution to address performance and security issues in distributed systems. Blockchain's public and distributed peer-to-peer ledger capability benefits cloud computing services which require functions such as, assured data provenance, auditing, management of digital assets, and distributed consensus. Blockchain's underlying consensus mechanism allows to build a tamper-proof environment, where transactions on any digital assets are verified by set of authentic participants or miners. With use of strong cryptographic methods, blocks of transactions are chained together to enable immutability on the records. However, achieving consensus demands computational power from the miners in exchange of handsome reward. Therefore, greedy miners always try to exploit the system by augmenting their mining power. In this paper, we first discuss blockchain's capability in providing assured data provenance in cloud and present vulnerabilities in blockchain cloud. We model the block withholding (BWH) attack in a blockchain cloud considering distinct pool reward mechanisms. BWH attack provides rogue miner ample resources in the blockchain cloud for disrupting honest miners' mining efforts, which was verified through simulations.

Chen, Lin, Xu, Lei, Shah, Nolan, Diallo, Nour, Gao, Zhimin, Lu, Yang, Shi, Weidong.  2017.  Unraveling Blockchain Based Crypto-Currency System Supporting Oblivious Transactions: A Formalized Approach. Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts. :23–28.

User privacy is an important issue in a blockchain based transaction system. Bitcoin, being one of the most widely used blockchain based transaction system, fails to provide enough protection on users' privacy. Many subsequent studies focus on establishing a system that hides the linkage between the identities (pseudonyms) of users and the transactions they carry out in order to provide a high level of anonymity. Examples include Zerocoin, Zerocash and so on. It thus becomes an interesting question whether such new transaction systems do provide enough protection on users' privacy. In this paper, we propose a novel and effective approach for de-anonymizing these transaction systems by leveraging information in the system that is not directly related, including the number of transactions made by each identity and time stamp of sending and receiving. Combining probability studies with optimization tools, we establish a model which allows us to determine, among all possible ways of linking between transactions and identities, the one that is most likely to be true. Subsequent transaction graph analysis could then be carried out, leading to the de-anonymization of the system. To solve the model, we provide exact algorithms based on mixed integer linear programming. Our research also establishes interesting relationships between the de-anonymization problem and other problems studied in the literature of theoretical computer science, e.g., the graph matching problem and scheduling problem.

2018-03-05
Tselios, C., Politis, I., Kotsopoulos, S..  2017.  Enhancing SDN Security for IoT-Related Deployments through Blockchain. 2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :303–308.

The majority of business activity of our integrated and connected world takes place in networks based on cloud computing infrastructure that cross national, geographic and jurisdictional boundaries. Such an efficient entity interconnection is made possible through an emerging networking paradigm, Software Defined Networking (SDN) that intends to vastly simplify policy enforcement and network reconfiguration in a dynamic manner. However, despite the obvious advantages this novel networking paradigm introduces, its increased attack surface compared to traditional networking deployments proved to be a thorny issue that creates skepticism when safety-critical applications are considered. Especially when SDN is used to support Internet-of-Things (IoT)-related networking elements, additional security concerns rise, due to the elevated vulnerability of such deployments to specific types of attacks and the necessity of inter-cloud communication any IoT application would require. The overall number of connected nodes makes the efficient monitoring of all entities a real challenge, that must be tackled to prevent system degradation and service outage. This position paper provides an overview of common security issues of SDN when linked to IoT clouds, describes the design principals of the recently introduced Blockchain paradigm and advocates the reasons that render Blockchain as a significant security factor for solutions where SDN and IoT are involved.

Tselios, C., Politis, I., Kotsopoulos, S..  2017.  Enhancing SDN Security for IoT-Related Deployments through Blockchain. 2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :303–308.

The majority of business activity of our integrated and connected world takes place in networks based on cloud computing infrastructure that cross national, geographic and jurisdictional boundaries. Such an efficient entity interconnection is made possible through an emerging networking paradigm, Software Defined Networking (SDN) that intends to vastly simplify policy enforcement and network reconfiguration in a dynamic manner. However, despite the obvious advantages this novel networking paradigm introduces, its increased attack surface compared to traditional networking deployments proved to be a thorny issue that creates skepticism when safety-critical applications are considered. Especially when SDN is used to support Internet-of-Things (IoT)-related networking elements, additional security concerns rise, due to the elevated vulnerability of such deployments to specific types of attacks and the necessity of inter-cloud communication any IoT application would require. The overall number of connected nodes makes the efficient monitoring of all entities a real challenge, that must be tackled to prevent system degradation and service outage. This position paper provides an overview of common security issues of SDN when linked to IoT clouds, describes the design principals of the recently introduced Blockchain paradigm and advocates the reasons that render Blockchain as a significant security factor for solutions where SDN and IoT are involved.

2018-01-23
Li, Wenting, Sforzin, Alessandro, Fedorov, Sergey, Karame, Ghassan O..  2017.  Towards Scalable and Private Industrial Blockchains. Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts. :9–14.

The blockchain emerges as an innovative tool that has the potential to positively impact the way we design a number of online applications today. In many ways, the blockchain technology is, however, still not mature enough to cater for industrial standards. Namely, existing Byzantine tolerant permission-based blockchain deployments can only scale to a limited number of nodes. These systems typically require that all transactions (and their order of execution) are publicly available to all nodes in the system, which comes at odds with common data sharing practices in the industry, and prevents a centralized regulator from overseeing the full blockchain system. In this paper, we propose a novel blockchain architecture devised specifically to meet industrial standards. Our proposal leverages the notion of satellite chains that can privately run different consensus protocols in parallel - thereby considerably boosting the scalability premises of the system. Our solution also accounts for a hands-off regulator that oversees the entire network, enforces specific policies by means of smart contracts, etc. We implemented our solution and integrated it with Hyperledger Fabric v0.6.

2017-12-28
Liang, X., Zhao, J., Shetty, S., Li, D..  2017.  Towards data assurance and resilience in IoT using blockchain. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :261–266.

Data assurance and resilience are crucial security issues in cloud-based IoT applications. With the widespread adoption of drones in IoT scenarios such as warfare, agriculture and delivery, effective solutions to protect data integrity and communications between drones and the control system have been in urgent demand to prevent potential vulnerabilities that may cause heavy losses. To secure drone communication during data collection and transmission, as well as preserve the integrity of collected data, we propose a distributed solution by utilizing blockchain technology along with the traditional cloud server. Instead of registering the drone itself to the blockchain, we anchor the hashed data records collected from drones to the blockchain network and generate a blockchain receipt for each data record stored in the cloud, reducing the burden of moving drones with the limit of battery and process capability while gaining enhanced security guarantee of the data. This paper presents the idea of securing drone data collection and communication in combination with a public blockchain for provisioning data integrity and cloud auditing. The evaluation shows that our system is a reliable and distributed system for drone data assurance and resilience with acceptable overhead and scalability for a large number of drones.

2017-11-03
Harrigan, M., Fretter, C..  2016.  The Unreasonable Effectiveness of Address Clustering. 2016 Intl IEEE Conferences on Ubiquitous Intelligence Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld). :368–373.

Address clustering tries to construct the one-to-many mapping from entities to addresses in the Bitcoin system. Simple heuristics based on the micro-structure of transactions have proved very effective in practice. In this paper we describe the primary reasons behind this effectiveness: address reuse, avoidable merging, super-clusters with high centrality,, the incremental growth of address clusters. We quantify their impact during Bitcoin's first seven years of existence.

Xu, X., Pautasso, C., Zhu, L., Gramoli, V., Ponomarev, A., Tran, A. B., Chen, S..  2016.  The Blockchain as a Software Connector. 2016 13th Working IEEE/IFIP Conference on Software Architecture (WICSA). :182–191.

Blockchain is an emerging technology for decentralized and transactional data sharing across a large network of untrusted participants. It enables new forms of distributed software architectures, where components can find agreements on their shared states without trusting a central integration point or any particular participating components. Considering the blockchain as a software connector helps make explicitly important architectural considerations on the resulting performance and quality attributes (for example, security, privacy, scalability and sustainability) of the system. Based on our experience in several projects using blockchain, in this paper we provide rationales to support the architectural decision on whether to employ a decentralized blockchain as opposed to other software solutions, like traditional shared data storage. Additionally, we explore specific implications of using the blockchain as a software connector including design trade-offs regarding quality attributes.

Biswas, K., Muthukkumarasamy, V..  2016.  Securing Smart Cities Using Blockchain Technology. 2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1392–1393.

A smart city uses information technology to integrate and manage physical, social, and business infrastructures in order to provide better services to its dwellers while ensuring efficient and optimal utilization of available resources. With the proliferation of technologies such as Internet of Things (IoT), cloud computing, and interconnected networks, smart cities can deliver innovative solutions and more direct interaction and collaboration between citizens and the local government. Despite a number of potential benefits, digital disruption poses many challenges related to information security and privacy. This paper proposes a security framework that integrates the blockchain technology with smart devices to provide a secure communication platform in a smart city.

Dennis, R., Owenson, G., Aziz, B..  2016.  A Temporal Blockchain: A Formal Analysis. 2016 International Conference on Collaboration Technologies and Systems (CTS). :430–437.

This paper presents a possible solution to a fundamental limitation facing all blockchain-based systems; scalability. We propose a temporal rolling blockchain which solves the problem of its current exponential growth, instead replacing it with a constant fixed-size blockchain. We conduct a thorough analysis of related work and present a formal analysis of the new rolling blockchain, comparing the results to a traditional blockchain model to demonstrate that the deletion of data from the blockchain does not impact on the security of the proposed blockchain model before concluding our work and presenting future work to be conducted.

Ronczka, J..  2016.  Backchanneling Quantum Bit (Qubit) 'Shuffling': Quantum Bit (Qubit) 'Shuffling' as Added Security by Slipstreaming Q-Morse. 2016 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE). :106–115.

A fresh look at the way secure communications is currently being done has been undertaken as a consequence of the large hacking's that have taken place recently. A plausible option maybe a return to the future via Morse code using how a quantum bit (Qubit) reacts when entangled to suggest a cypher. This quantum cyphers uses multiple properties of unique entities that have many random radicals which makes hacking more difficult that traditional 'Rivest-Shamir-Adleman' (RSA), 'Digital Signature Algorithm' (DSA) or 'Elliptic Curve Digital Signature Algorithm' (ECDSA). Additional security is likely by Backchannelling (slipstreaming) Quantum Morse code (Q-Morse) keys composed of living and non-living entities. This means Blockchain ledger history (forwards-backwards) is audited during an active session. Verification keys are Backchannelling (slipstreaming) during the session (e.g. train driver must incrementally activate a switch otherwise the train stops) using predicted-expected sender-receiver properties as well as their past history of disconformities to random radicals encountered. In summary, Quantum Morse code (Q-Morse) plausibly is the enabler to additional security by Backchannelling (slipstreaming) during a communications session.