Visible to the public Biblio

Filters: Keyword is smart contract  [Clear All Filters]
2021-09-16
Sangpetch, Akkarit, Sangpetch, Orathai.  2020.  PEX: Privacy-Preserved, Multi-Tier Exchange Framework for Cross Platform Virtual Assets Trading. 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC). :1–4.
In traditional virtual asset trading market, several risks, e.g. scams, cheating users, and market reach, have been pushed to users (sellers/buyers). Users need to decide who to trust; otherwise, no business. This fact impedes the growth of virtual asset trading market. In the past few years, several virtual asset marketplaces have embraced blockchain and smart contract technology to alleviate such risks, while trying to address privacy and scalability issues. To attain both speed and non-repudiation property for all transactions, existing blockchain-based exchange systems still cannot fully accomplish. In real-life trading, users use traditional contract to provide non-repudiation to achieve accountability in all committed transactions, so-called thorough non-repudiation. This is essential when dispute happens. To achieve similar thorough non-repudiation as well as privacy and scalability, we propose PEX, Privacy-preserved, multi-tier EXchange framework for cross platform virtual assets trading. PEX creates a smart contract for each virtual asset trading request. The key to address the challenges is to devise two-level distributed ledgers with two different types of quorums where one is for public knowledge in a global ledger and the other is for confidential information in a private ledger. A private quorum is formed to process individual smart contract and record the transactions in a private distributed ledger in order to maintain privacy. Smart contract execution checkpoints will be continuously written in a global ledger to strengthen thorough non-repudiation. PEX smart contract can be executed in parallel to promote scalability. PEX is also equipped with our reputation-based network to track contribution and discourage malicious behavior nodes or users, building healthy virtual asset ecosystem.
Ruggeri, Armando, Celesti, Antonio, Fazio, Maria, Galletta, Antonino, Villari, Massimo.  2020.  BCB-X3DH: A Blockchain Based Improved Version of the Extended Triple Diffie-Hellman Protocol. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :73–78.
The Extended Triple Diffie-Hellman (X3DH) protocol has been used for years as the basis of secure communication establishment among parties (i.e, humans and devices) over the Internet. However, such a protocol has several limits. It is typically based on a single trust third-party server that represents a single point of failure (SPoF) being consequently exposed to well- known Distributed Denial of Service (DDOS) attacks. In order to address such a limit, several solutions have been proposed so far that are often cost expensive and difficult to be maintained. The objective of this paper is to propose a BlockChain-Based X3DH (BCB-X3DH) protocol that allows eliminating such a SPoF, also simplifying its maintenance. Specifically, it combines the well- known X3DH security mechanisms with the intrinsic features of data non-repudiation and immutability that are typical of Smart Contracts. Furthermore, different implementation approaches are discussed to suits both human-to-human and device-to-device scenarios. Experiments compared the performance of both X3DH and BCB-X3DH.
2021-09-07
Al'aziz, Bram Andika Ahmad, Sukarno, Parman, Wardana, Aulia Arif.  2020.  Blacklisted IP Distribution System to Handle DDoS Attacks on IPS Snort Based on Blockchain. 2020 6th Information Technology International Seminar (ITIS). :41–45.
The mechanism for distributing information on the source of the attack by combining blockchain technology with the Intrusion Prevention System (IPS) can be done so that DDoS attack mitigation becomes more flexible, saves resources and costs. Also, by informing the blacklisted Internet Protocol(IP), each IPS can share attack source information so that attack traffic blocking can be carried out on IPS that are closer to the source of the attack. Therefore, the attack traffic passing through the network can be drastically reduced because the attack traffic has been blocked on the IPS that is closer to the attack source. The blocking of existing DDoS attack traffic is generally carried out on each IPS without a mechanism to share information on the source of the attack so that each IPS cannot cooperate. Also, even though the DDoS attack traffic did not reach the server because it had been blocked by IPS, the attack traffic still flooded the network so that network performance was reduced. Through smart contracts on the Ethereum blockchain, it is possible to inform the source of the attack or blacklisted IP addresses without requiring additional infrastructure. The blacklisted IP address is used by IPS to detect and handle DDoS attacks. Through the blacklisted IP distribution scheme, testing and analysis are carried out to see information on the source of the attack on each IPS and the attack traffic that passes on the network. The result is that each IPS can have the same blacklisted IP so that each IPS can have the same attack source information. The results also showed that the attack traffic through the network infrastructure can be drastically reduced. Initially, the total number of attack packets had an average of 115,578 reduced to 27,165.
2021-07-08
Oktian, Yustus Eko, Lee, Sang-Gon, Lee, Hoon-Jae.  2020.  TwoChain: Leveraging Blockchain and Smart Contract for Two Factor Authentication. 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI). :187—191.
User identity and personal information remain to be hot targets for attackers. From recent surveys, we can categorize that 65.5% of all cyberattacks in 2018 target user information. Sadly, most of the time, the system's security depends on how secure it is the implementation from the provider-side. One defense technique that the user can take part in is applying a two-factor authentication (2FA) system for their account. However, we observe that state-of-the-art 2FAs have several weaknesses and limitations. In this paper, we propose TwoChain, a blockchain-based 2FA system for web services to overcome those issues. Our implementation facilitates an alternative 2FA system that is more secure, disposable, and decentralized. Finally, we release TwoChain for public use.
2021-06-30
Huang, Zhicai, Zhu, Huiqing.  2020.  Blockchain-based Data Security Management Mechanism for Power Terminals. 2020 International Wireless Communications and Mobile Computing (IWCMC). :191—194.
In order to solve the problem of data leakage and tampering in end-to-end power data security management, this paper proposes a Blockchain-based power terminal data security management model, which includes power terminals and Blockchain nodes. Among them, the power terminal is responsible for the collection of front-end substation data; the Blockchain node is responsible for data verification and data storage. Secondly, the data security management mechanism of power terminal based on Blockchain is proposed, including data aggregation, data encryption and transmission, signature verification for single Blockchain, aggregation signature for main Blockchain nodes, and intelligent contract storage. Finally, by applying the mechanism to the data storage process and data request process analysis, the data management mechanism proposed in this paper has a good application effect.
2021-06-28
Mounnan, Oussama, Mouatasim, Abdelkrim El, Manad, Otman, Hidar, Tarik, El Kalam, Anas Abou, Idboufker, Noureddine.  2020.  Privacy-Aware and Authentication based on Blockchain with Fault Tolerance for IoT enabled Fog Computing. 2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC). :347–352.
Fog computing is a new distributed computing paradigm that extends the cloud to the network edge. Fog computing aims at improving quality of service, data access, networking, computation and storage. However, the security and privacy issues persist, even if many cloud solutions were proposed. Indeed, Fog computing introduces new challenges in terms of security and privacy, due to its specific features such as mobility, geo-distribution and heterogeneity etc. Blockchain is an emergent concept bringing efficiency in many fields. In this paper, we propose a new access control scheme based on blockchain technology for the fog computing with fault tolerance in the context of the Internet of Things. Blockchain is used to provide secure management authentication and access process to IoT devices. Each network entity authenticates in the blockchain via the wallet, which allows a secure communication in decentralized environment, hence it achieves the security objectives. In addition, we propose to establish a secure connection between the users and the IoT devices, if their attributes satisfy the policy stored in the blockchain by smart contract. We also address the blockchain transparency problem by the encryption of the users attributes both in the policy and in the request. An authorization token is generated if the encrypted attributes are identical. Moreover, our proposition offers higher scalability, availability and fault tolerance in Fog nodes due to the implementation of load balancing through the Min-Min algorithm.
2021-05-20
Dua, Amit, Barpanda, Siddharth Sekhar, Kumar, Neeraj, Tanwar, Sudeep.  2020.  Trustful: A Decentralized Public Key Infrastructure and Identity Management System. 2020 IEEE Globecom Workshops GC Wkshps. :1—6.

Modern Internet TCP uses Secure Sockets Layers (SSL)/Transport Layer Security (TLS) for secure communication, which relies on Public Key Infrastructure (PKIs) to authenticate public keys. Conventional PKI is done by Certification Authorities (CAs), issuing and storing Digital Certificates, which are public keys of users with the users identity. This leads to centralization of authority with the CAs and the storage of CAs being vulnerable and imposes a security concern. There have been instances in the past where CAs have issued rogue certificates or the CAs have been hacked to issue malicious certificates. Motivated from these facts, in this paper, we propose a method (named as Trustful), which aims to build a decentralized PKI using blockchain. Blockchains provide immutable storage in a decentralized manner and allows us to write smart contracts. Ethereum blockchain can be used to build a web of trust model where users can publish attributes, validate attributes about other users by signing them and creating a trust store of users that they trust. Trustful works on the Web-of-Trust (WoT) model and allows for any entity on the network to verify attributes about any other entity through a trusted network. This provides an alternative to the conventional CA-based identity verification model. The proposed model has been implemented and tested for efficacy and known major security attacks.

Al-madani, Ali Mansour, Gaikwad, Ashok T., Mahale, Vivek, Ahmed, Zeyad A.T..  2020.  Decentralized E-voting system based on Smart Contract by using Blockchain Technology. 2020 International Conference on Smart Innovations in Design, Environment, Management, Planning and Computing (ICSIDEMPC). :176—180.

Nowadays the use of the Internet is growing; E-voting system has been used by different countries because it reduces the cost and the time which used to consumed by using traditional voting. When the voter wants to access the E-voting system through the web application, there are requirements such as a web browser and a server. The voter uses the web browser to reach to a centralized database. The use of a centralized database for the voting system has some security issues such as Data modification through the third party in the network due to the use of the central database system as well as the result of the voting is not shown in real-time. However, this paper aims to provide an E-voting system with high security by using blockchain. Blockchain provides a decentralized model that makes the network Reliable, safe, flexible, and able to support real-time services.

2021-04-27
Lekshmi, M. M., Subramanian, N..  2020.  Data Auditing in Cloud Storage using Smart Contract. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). :999–1002.
In general, Cloud storage is considered as a distributed model. Here, the data is usually stored on remote servers to properly maintain, back up and make it accessible to clients over a network, whenever required. Cloud storage providers keep the data and processes to oversee it on capacity servers based on secure virtualization methods. A security framework is proposed for auditing the cloud data, which makes use of the proposed blockchain technology. This ensures to efficiently maintain the data integrity. The blockchain structure inspects the mutation of operational information and thereby ensures the data security. Usually, the data auditing scheme is widely used in a Third Party Auditor (TPA), which is a centralized entity that the client is forced to trust, even if the credibility is not guaranteed. To avoid the participation of TPA, a decentralised scheme is suggested, where it uses a smart contract for auditing the cloud data. The working of smart contracts is based on blockchain. Ethereum is used to deploy a smart contract thereby eliminating the need of a foreign source in the data auditing process.
Tsai, W., Chou, T., Chen, J., Ma, Y., Huang, C..  2020.  Blockchain as a Platform for Secure Cloud Computing Services. 2020 22nd International Conference on Advanced Communication Technology (ICACT). :155—158.
Problems related to privacy and cyber-attacks have increased in recent years as a result of the rapid development of cloud computing. This work concerns secure cloud computing services on a blockchain platform, called cloud@blockchain, which benefit from the anonymity and immutability of blockchain. Two functions- anonymous file sharing and inspections to find illegally uploaded files- on cloud@blockchain are designed. On cloud@blockchain, cloud users can access data through smart contracts, and recognize all users within the application layer. The performance of three architectures- a pure blockchain, a hybrid blockchain with cache and a traditional database in accessing data is analyzed. The results reveal the superiority of the hybrid blockchain with the cache over the pure blockchain and the traditional database, which it outperforms by 500% and 53.19%, respectively.
2021-03-29
Amin, A. H. M., Abdelmajid, N., Kiwanuka, F. N..  2020.  Identity-of-Things Model using Composite Identity on Permissioned Blockchain Network. 2020 Seventh International Conference on Software Defined Systems (SDS). :171—176.

The growing prevalence of Internet-of-Things (IoT) technology has led to an increase in the development of heterogeneous smart applications. Smart applications may involve a collaborative participation between IoT devices. Participation of IoT devices for specific application requires a tamper-proof identity to be generated and stored, in order to completely represent the device, as well as to eliminate the possibility of identity spoofing and presence of rogue devices in a network. In this paper, we present a composite Identity-of-Things (IDoT) approach on IoT devices with permissioned blockchain implementation for distributed identity management model. Our proposed approach considers both application and device domains in generating the composite identity. In addition, the use of permissioned blockchain for identity storage and verification allows the identity to be immutable. A simulation has been carried out to demonstrate the application of the proposed identity management model.

2021-03-04
Cao, L., Wan, Z..  2020.  Anonymous scheme for blockchain atomic swap based on zero-knowledge proof. 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :371—374.
The blockchain's cross-chain atomic exchange uses smart contracts to replace trusted third parties, but atomic exchange cannot guarantee the anonymity of transactions, and it will inevitably increase the risk of privacy leakage. Therefore, this paper proposes an atom based on zero-knowledge proof. Improved methods of exchange to ensure the privacy of both parties in a transaction. The anonymous improvement scheme in this article uses the UTXO unconsumed model to add a new anonymous list in the blockchain. When sending assets to smart contracts, zero-knowledge proof is used to provide self-certification of ownership of the asset, and then the transaction is broken down. Only the hash value of the transaction is sent to the node, and the discarded list is used to verify the validity of the transaction, which achieves the effect of storing assets anonymously in the smart contract. At the same time, a smart contract is added when the two parties in the transaction communicate to exchange the contract address of the newly set smart contract between the two parties in the transaction. This can prevent the smart contract address information from being stolen when the two parties in the transaction communicate directly.
2021-02-23
Fan, W., Chang, S.-Y., Emery, S., Zhou, X..  2020.  Blockchain-based Distributed Banking for Permissioned and Accountable Financial Transaction Processing. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1—9.

Distributed banking platforms and services forgo centralized banks to process financial transactions. For example, M-Pesa provides distributed banking service in the developing regions so that the people without a bank account can deposit, withdraw, or transfer money. The current distributed banking systems lack the transparency in monitoring and tracking of distributed banking transactions and thus do not support auditing of distributed banking transactions for accountability. To address this issue, this paper proposes a blockchain-based distributed banking (BDB) scheme, which uses blockchain technology to leverage its built-in properties to record and track immutable transactions. BDB supports distributed financial transaction processing but is significantly different from cryptocurrencies in its design properties, simplicity, and computational efficiency. We implement a prototype of BDB using smart contract and conduct experiments to show BDB's effectiveness and performance. We further compare our prototype with the Ethereum cryptocurrency to highlight the fundamental differences and demonstrate the BDB's superior computational efficiency.

2020-11-16
Choudhury, O., Sylla, I., Fairoza, N., Das, A..  2019.  A Blockchain Framework for Ensuring Data Quality in Multi-Organizational Clinical Trials. 2019 IEEE International Conference on Healthcare Informatics (ICHI). :1–9.
The cost and complexity of conducting multi-site clinical trials have significantly increased over time, with site monitoring, data management, and Institutional Review Board (IRB) amendments being key drivers. Trial sponsors, such as pharmaceutical companies, are also increasingly outsourcing trial management to multiple organizations. Enforcing compliance with standard operating procedures, such as preserving data privacy for human subject protection, is crucial for upholding the integrity of a study and its findings. Current efforts to ensure quality of data collected at multiple sites and by multiple organizations lack a secure, trusted, and efficient framework for fragmented data capture. To address this challenge, we propose a novel data management infrastructure based on a permissioned blockchain with private channels, smart contracts, and distributed ledgers. We use an example multi-organizational clinical trial to design and implement a blockchain network: generate activity-specific private channels to segregate data flow for confidentiality, write channel-specific smart contracts to enforce regulatory guidelines, monitor the immutable transaction log to detect protocol breach, and auto-generate audit trail. Through comprehensive experimental study, we demonstrate that our system handles high-throughput transactions, exhibits low-latency, and constitutes a trusted, scalable solution.
Zhang, C., Xu, C., Xu, J., Tang, Y., Choi, B..  2019.  GEMˆ2-Tree: A Gas-Efficient Structure for Authenticated Range Queries in Blockchain. 2019 IEEE 35th International Conference on Data Engineering (ICDE). :842–853.
Blockchain technology has attracted much attention due to the great success of the cryptocurrencies. Owing to its immutability property and consensus protocol, blockchain offers a new solution for trusted storage and computation services. To scale up the services, prior research has suggested a hybrid storage architecture, where only small meta-data are stored onchain and the raw data are outsourced to off-chain storage. To protect data integrity, a cryptographic proof can be constructed online for queries over the data stored in the system. However, the previous schemes only support simple key-value queries. In this paper, we take the first step toward studying authenticated range queries in the hybrid-storage blockchain. The key challenge lies in how to design an authenticated data structure (ADS) that can be efficiently maintained by the blockchain, in which a unique gas cost model is employed. By analyzing the performance of the existing techniques, we propose a novel ADS, called GEM2-tree, which is not only gas-efficient but also effective in supporting authenticated queries. To further reduce the ADS maintenance cost without sacrificing much the query performance, we also propose an optimized structure, GEM2*-tree, by designing a two-level index structure. Theoretical analysis and empirical evaluation validate the performance of the proposed ADSs.
2020-10-19
Xia, Qi, Sifah, Emmanuel Boateng, Obour Agyekum, Kwame Opuni-Boachie, Xia, Hu, Acheampong, Kingsley Nketia, Smahi, Abla, Gao, Jianbin, Du, Xiaojiang, Guizani, Mohsen.  2019.  Secured Fine-Grained Selective Access to Outsourced Cloud Data in IoT Environments. IEEE Internet of Things Journal. 6:10749–10762.
With the vast increase in data transmission due to a large number of information collected by devices, data management, and security has been a challenge for organizations. Many data owners (DOs) outsource their data to cloud repositories due to several economic advantages cloud service providers present. However, DOs, after their data are outsourced, do not have complete control of the data, and therefore, external systems are incorporated to manage the data. Several kinds of research refer to the use of encryption techniques to prevent unauthorized access to data but prove to be deficient in providing suitable solutions to the problem. In this article, we propose a secure fine-grain access control system for outsourced data, which supports read and write operations to the data. We make use of an attribute-based encryption (ABE) scheme, which is regarded as a suitable scheme to achieve access control for security and privacy (confidentiality) of outsourced data. This article considers different categories of data users, and make provisions for distinct access roles and permissible actions on the outsourced data with dynamic and efficient policy updates to the corresponding ciphertext in cloud repositories. We adopt blockchain technologies to enhance traceability and visibility to enable control over outsourced data by a DO. The security analysis presented demonstrates that the security properties of the system are not compromised. Results based on extensive experiments illustrate the efficiency and scalability of our system.
2020-10-06
Li, Yue.  2019.  Finding Concurrency Exploits on Smart Contracts. 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). :144—146.

Smart contracts have been widely used on Ethereum to enable business services across various application domains. However, they are prone to different forms of security attacks due to the dynamic and non-deterministic blockchain runtime environment. In this work, we highlighted a general miner-side type of exploit, called concurrency exploit, which attacks smart contracts via generating malicious transaction sequences. Moreover, we designed a systematic algorithm to automatically detect such exploits. In our preliminary evaluation, our approach managed to identify real vulnerabilities that cannot be detected by other tools in the literature.

2020-09-28
Guo, Hao, Li, Wanxin, Nejad, Mark, Shen, Chien-Chung.  2019.  Access Control for Electronic Health Records with Hybrid Blockchain-Edge Architecture. 2019 IEEE International Conference on Blockchain (Blockchain). :44–51.
The global Electronic Health Record (EHR) market is growing dramatically and expected to reach \$39.7 billions by 2022. To safe-guard security and privacy of EHR, access control is an essential mechanism for managing EHR data. This paper proposes a hybrid architecture to facilitate access control of EHR data by using both blockchain and edge node. Within the architecture, a blockchain-based controller manages identity and access control policies and serves as a tamper-proof log of access events. In addition, off-chain edge nodes store the EHR data and apply policies specified in Abbreviated Language For Authorization (ALFA) to enforce attribute-based access control on EHR data in collaboration with the blockchain-based access control logs. We evaluate the proposed hybrid architecture by utilizing Hyperledger Composer Fabric blockchain to measure the performance of executing smart contracts and ACL policies in terms of transaction processing time and response time against unauthorized data retrieval.
2020-07-09
Duan, Huayi, Zheng, Yifeng, Du, Yuefeng, Zhou, Anxin, Wang, Cong, Au, Man Ho.  2019.  Aggregating Crowd Wisdom via Blockchain: A Private, Correct, and Robust Realization. 2019 IEEE International Conference on Pervasive Computing and Communications (PerCom. :1—10.

Crowdsensing, driven by the proliferation of sensor-rich mobile devices, has emerged as a promising data sensing and aggregation paradigm. Despite useful, traditional crowdsensing systems typically rely on a centralized third-party platform for data collection and processing, which leads to concerns like single point of failure and lack of operation transparency. Such centralization hinders the wide adoption of crowdsensing by wary participants. We therefore explore an alternative design space of building crowdsensing systems atop the emerging decentralized blockchain technology. While enjoying the benefits brought by the public blockchain, we endeavor to achieve a consolidated set of desirable security properties with a proper choreography of latest techniques and our customized designs. We allow data providers to safely contribute data to the transparent blockchain with the confidentiality guarantee on individual data and differential privacy on the aggregation result. Meanwhile, we ensure the service correctness of data aggregation and sanitization by delicately employing hardware-assisted transparent enclave. Furthermore, we maintain the robustness of our system against faulty data providers that submit invalid data, with a customized zero-knowledge range proof scheme. The experiment results demonstrate the high efficiency of our designs on both mobile client and SGX-enabled server, as well as reasonable on-chain monetary cost of running our task contract on Ethereum.

2020-07-06
Balouchestani, Arian, Mahdavi, Mojtaba, Hallaj, Yeganeh, Javdani, Delaram.  2019.  SANUB: A new method for Sharing and Analyzing News Using Blockchain. 2019 16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC). :139–143.
Millions of news are being exchanged daily among people. With the appearance of the Internet, the way of broadcasting news has changed and become faster, however it caused many problems. For instance, the increase in the speed of broadcasting news leads to an increase in the speed of fake news creation. Fake news can have a huge impression on societies. Additionally, the existence of a central entity, such as news agencies, could lead to fraud in the news broadcasting process, e.g. generating fake news and publishing them for their benefits. Since Blockchain technology provides a reliable decentralized network, it can be used to publish news. In addition, Blockchain with the help of decentralized applications and smart contracts can provide a platform in which fake news can be detected through public participation. In this paper, we proposed a new method for sharing and analyzing news to detect fake news using Blockchain, called SANUB. SANUB provides features such as publishing news anonymously, news evaluation, reporter validation, fake news detection and proof of news ownership. The results of our analysis show that SANUB outperformed the existing methods.
2020-06-29
Giri, Nupur, Jaisinghani, Rahul, Kriplani, Rohit, Ramrakhyani, Tarun, Bhatia, Vinay.  2019.  Distributed Denial Of Service(DDoS) Mitigation in Software Defined Network using Blockchain. 2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :673–678.
A DDoS attack is a spiteful attempt to disrupt legitimate traffic to a server by overwhelming the target with a flood of requests from geographically dispersed systems. Today attackers prefer DDoS attack methods to disrupt target services as they generate GBs to TBs of random data to flood the target. In existing mitigation strategies, because of lack of resources and not having the flexibility to cope with attacks by themselves, they are not considered to be that effective. So effective DDoS mitigation techniques can be provided using emerging technologies such as blockchain and SDN(Software-Defined Networking). We propose an architecture where a smart contract is deployed in a private blockchain, which facilitates a collaborative DDoS mitigation architecture across multiple network domains. Blockchain application is used as an additional security service. With Blockchain, shared protection is enabled among all hosts. With help of smart contracts, rules are distributed among all hosts. In addition, SDN can effectively enable services and security policies dynamically. This mechanism provides ASes(Autonomous Systems) the possibility to deploy their own DPS(DDoS Prevention Service) and there is no need to transfer control of the network to the third party. This paper focuses on the challenges of protecting a hybridized enterprise from the ravages of rapidly evolving Distributed Denial of Service(DDoS) attack.
2020-04-13
Heiss, Jonathan, Eberhardt, Jacob, Tai, Stefan.  2019.  From Oracles to Trustworthy Data On-Chaining Systems. 2019 IEEE International Conference on Blockchain (Blockchain). :496–503.
Many blockchain transactions require blockchain-external data sources to provide data. Oracle systems have been proposed as a link between blockchains and blockchain-external resources. However, these Oracle systems vary greatly in assumptions and applicability and each system addresses the challenge of data on-chaining partly. We argue that Data On-chaining must be done in a trustworthy manner and, as a first contribution, define a set of key requirements for Trustworthy Data On-chaining. Further, we provide an in-depth assessment and comparison of state-of-the-art Oracle systems with regards to these requirements. This differentiation pinpoints the need for a uniform understanding of and directions for future research on Trustworthy Data On-chaining.
2020-04-06
Patsonakis, Christos, Samari, Katerina, Kiayiasy, Aggelos, Roussopoulos, Mema.  2019.  On the Practicality of a Smart Contract PKI. 2019 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPCON). :109–118.
Public key infrastructures (PKIs) are one of the main building blocks for securing communications over the Internet. Currently, PKIs are under the control of centralized authorities, which is problematic as evidenced by numerous incidents where they have been compromised. The distributed, fault tolerant log of transactions provided by blockchains and more recently, smart contract platforms, constitutes a powerful tool for the decentralization of PKIs. To verify the validity of identity records, blockchain-based identity systems store on chain either all identity records, or, a small (or even constant) sized amount of data for verifying identity records stored off chain. However, as most of these systems have never been implemented, there is little information regarding the practical implications of each design's tradeoffs. In this work, we first implement and evaluate the only provably secure, smart contract based PKI of Patsonakis et al. on top of Ethereum. This construction incurs constant-sized storage at the expense of computational complexity. To explore this tradeoff, we propose and implement a second construction which, eliminates the need for trusted setup, preserves the security properties of Patsonakis et al. and, as illustrated through our evaluation, is the only version with constant-sized state that can be deployed on the live chain of Ethereum. Furthermore, we compare these two systems with the simple approach of most prior works, e.g., the Ethereum Name Service, where all identity records are stored on the smart contract's state, to illustrate several shortcomings of Ethereum and its cost model. We propose several modifications for fine tuning the model, which would be useful to be considered for any smart contract platform like Ethereum so that it reaches its full potential to support arbitrary distributed applications.
Huang, Wei-Chiao, Yeh, Lo-Yao, Huang, Jiun-Long.  2019.  A Monitorable Peer-to-Peer File Sharing Mechanism. 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS). :1–4.
With the rise of blockchain technology, peer-to-peer network system has once again caught people's attention. Peer-to-peer (P2P) is currently being implemented on various kind of decentralized systems such as InterPlanetary File System (IPFS). However, P2P file sharing network systems is not without its flaws. Data stored in the other nodes cannot be deleted by the owner and can only be deleted by other nodes themselves. Ensuring that personal data can be completely removed is an important issue to comply with the European Union's General Data Protection Regulation (GDPR) criteria. To improve P2Ps privacy and security, we propose a monitorable peer-to-peer file sharing mechanism that synchronizes with other nodes to perform file deletion and to generate the File Authentication Code (FAC) of each IPFS nodes in order to make sure the system synchronized correctly. The proposed mechanism can integrate with a consortium Blockchain to comply with GDPR.
2020-03-12
Gorodnichev, Mikhail G., Nazarova, Anastasia N., Moseva, Marina S..  2019.  Development of Platform for Confirming and Storing Supply Data Using Blockchain Technology. 2019 International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT QM IS). :182–185.

This article is devoted to the development of a platform for reliable storage of information on supplies based on blockchain technology. The article discusses the main approaches to the work of decentralized applications, as well as the main problems.