Visible to the public Biblio

Filters: Keyword is Information Centric Networks  [Clear All Filters]
2021-04-08
Deng, L., Luo, J., Zhou, J., Wang, J..  2020.  Identity-based Secret Sharing Access Control Framework for Information-Centric Networking. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :507–511.
Information-centric networking (ICN) has played an increasingly important role in the next generation network design. However, to make better use of request-response communication mode in the ICN network, revoke user privileges more efficiently and protect user privacy more safely, an effective access control mechanism is needed. In this paper, we propose IBSS (identity-based secret sharing), which achieves efficient content distribution by using improved Shamir's secret sharing method. At the same time, collusion attacks are avoided by associating polynomials' degree with the number of users. When authenticating user identity and transmitting content, IBE and IBS are introduced to achieve more efficient and secure identity encryption. From the experimental results, the scheme only introduces an acceptable delay in file retrieval, and it can request follow-up content very efficiently.
Dinh, N., Tran, M., Park, Y., Kim, Y..  2020.  An Information-centric NFV-based System Implementation for Disaster Management Services. 2020 International Conference on Information Networking (ICOIN). :807–810.
When disasters occur, they not only affect the human life. Therefore, communication in disaster management is very important. During the disaster recovery phase, the network infrastructure may be partially fragmented and mobile rescue operations may involve many teams with different roles which can dynamically change. Therefore, disaster management services require high flexibility both in terms of network infrastructure management and rescue group communication. Existing studies have shown that IP-based or traditional telephony solutions are not well-suited to deal with such flexible group communication and network management due to their connection-oriented communication, no built-in support for mobile devices, and no mechanism for network fragmentation. Recent studies show that information-centric networking offers scalable and flexible communication based on its name-based interest-oriented communication approach. However, considering the difficulty of deploying a new service on the existing network, the programmability and virtualization of the network are required. This paper presents our implementation of an information-centric disaster management system based on network function virtualization (vICSNF). We show a proof-of-concept system with a case study for Seoul disaster management services. The system achieves flexibility both in terms of network infrastructure management and rescue group communication. Obtained testbed results show that vICSNF achieves a low communication overhead compared to the IP-based approach and the auto-configuration of vICSNFs enables the quick deployment for disaster management services in disaster scenarios.
Nakamura, R., Kamiyama, N..  2020.  Analysis of Content Availability at Network Failure in Information-Centric Networking. 2020 16th International Conference on Network and Service Management (CNSM). :1–7.
In recent years, ICN (Information-Centric Networking) has been under the spotlight as a network that mainly focuses on transmitted and received data rather than on the hosts that transmit and receive data. Generally, the communication networks such as ICNs are required to be robust against network failures caused by attacks and disasters. One of the metrics for the robustness of conventional host-centric networks, e.g., TCP/IP network, is reachability between nodes in the network after network failures, whereas the key metric for the robustness of ICNs is content availability. In this paper, we focus on an arbitrary ICN network and derive the content availability for a given probability of node removal. Especially, we analytically obtain the average content availability over an entire network in the case where just a single path from a node to a repository, i.e., contents server, storing contents is available and where multiple paths to the repository are available, respectively. Furthermore, through several numerical evaluations, we investigate the effect of the structure of network topology as well as the pattern and scale of the network failures on the content availability in ICN. Our findings include that, regardless of patterns of network failures, the content availability is significantly improved by caching contents at routers and using multiple paths, and that the content availability is more degraded at cluster-based node removal compared with random node removal.
Nasir, N. A., Jeong, S.-H..  2020.  Testbed-based Performance Evaluation of the Information-Centric Network. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :166–169.
Proliferation of the Internet usage is rapidly increasing, and it is necessary to support the performance requirements for multimedia applications, including lower latency, improved security, faster content retrieval, and adjustability to the traffic load. Nevertheless, because the current Internet architecture is a host-oriented one, it often fails to support the necessary demands such as fast content delivery. A promising networking paradigm called Information-Centric Networking (ICN) focuses on the name of the content itself rather than the location of that content. A distinguished alternative to this ICN concept is Content-Centric Networking (CCN) that exploits more of the performance requirements by using in-network caching and outperforms the current Internet in terms of content transfer time, traffic load control, mobility support, and efficient network management. In this paper, instead of using the saturated method of validating a theory by simulation, we present a testbed-based performance evaluation of the ICN network. We used several new functions of the proposed testbed to improve the performance of the basic CCN. In this paper, we also show that the proposed testbed architecture performs better in terms of content delivery time compared to the basic CCN architecture through graphical results.
Shi, S., Li, J., Wu, H., Ren, Y., Zhi, J..  2020.  EFM: An Edge-Computing-Oriented Forwarding Mechanism for Information-Centric Networks. 2020 3rd International Conference on Hot Information-Centric Networking (HotICN). :154–159.
Information-Centric Networking (ICN) has attracted much attention as a promising future network design, which presents a paradigm shift from host-centric to content-centric. However, in edge computing scenarios, there is still no specific ICN forwarding mechanism to improve transmission performance. In this paper, we propose an edge-oriented forwarding mechanism (EFM) for edge computing scenarios. The rationale is to enable edge nodes smarter, such as acting as agents for both consumers and providers to improve content retrieval and distribution. On the one hand, EFM can assist consumers: the edge router can be used either as a fast content repository to satisfy consumers’ requests or as a smart delegate of consumers to request content from upstream nodes. On the other hand, EFM can assist providers: EFM leverages the optimized in-network recovery/retransmission to detect packet loss or even accelerate the content distribution. The goal of our research is to improve the performance of edge networks. Simulation results based on ndnSIM indicate that EFM can enable efficient content retrieval and distribution, friendly to both consumers and providers.
2021-02-22
Gündoğan, C., Amsüss, C., Schmidt, T. C., Wählisch, M..  2020.  IoT Content Object Security with OSCORE and NDN: A First Experimental Comparison. 2020 IFIP Networking Conference (Networking). :19–27.
The emerging Internet of Things (IoT) challenges the end-to-end transport of the Internet by low power lossy links and gateways that perform protocol translations. Protocols such as CoAP or MQTT-SN are degraded by the overhead of DTLS sessions, which in common deployment protect content transfer only up to the gateway. To preserve content security end-to-end via gateways and proxies, the IETF recently developed Object Security for Constrained RESTful Environments (OSCORE), which extends CoAP with content object security features commonly known from Information Centric Networks (ICN). This paper presents a comparative analysis of protocol stacks that protect request-response transactions. We measure protocol performances of CoAP over DTLS, OSCORE, and the information-centric Named Data Networking (NDN) protocol on a large-scale IoT testbed in single- and multi-hop scenarios. Our findings indicate that (a) OSCORE improves on CoAP over DTLS in error-prone wireless regimes due to omitting the overhead of maintaining security sessions at endpoints, and (b) NDN attains superior robustness and reliability due to its intrinsic network caches and hop-wise retransmissions.
2020-01-21
Zhou, Yiwen, Shen, Qili, Dong, Mianxiong, Ota, Kaoru, Wu, Jun.  2019.  Chaos-Based Delay-Constrained Green Security Communications for Fog-Enabled Information-Centric Multimedia Network. 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring). :1–6.
The Information-Centric Network possessing the content-centric features, is the innovative architecture of the next generation of network. Collaborating with fog computing characterized by its strong edge power, ICN will become the development trend of the future network. The emergence of Information-Centric Multimedia Network (ICMN) can meet the increasing demand for transmission of multimedia streams in the current Internet environment. The data transmission has become more delay-constrained and convenient because of the distributed storage, the separation between the location of information and terminals, and the strong cacheability of each node in ICN. However, at the same time, the security of the multimedia streams in the delivery process still requires further protection against wiretapping, interception or attacking. In this paper, we propose the delay-constrained green security communications for ICMN based on chaotic encryption and fog computing so as to transmit multimedia streams in a more secure and time-saving way. We adapt a chaotic cryptographic method to ICMN, implementing the encryption and decryption of multimedia streams. Meanwhile, the network edge capability to process the encryption and decryption is enhanced. Thanks to the fog computing, the strengthened transmission speed of the multimedia streams can fulfill the need for short latency. The work in the paper is of great significance to improve the green security communications of multimedia streams in ICMN.
Suksomboon, Kalika, Shen, Zhishu, Ueda, Kazuaki, Tagami, Atsushi.  2019.  C2P2: Content-Centric Privacy Platform for Privacy-Preserving Monitoring Services. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:252–261.
Motivated by ubiquitous surveillance cameras in a smart city, a monitoring service can be provided to citizens. However, the rise of privacy concerns may disrupt this advanced service. Yet, the existing cloud-based services have not clearly proven that they can preserve Wth-privacy in which the relationship of three types of information, i.e., who requests the service, what the target is and where the camera is, does not leak. We address this problem by proposing a content-centric privacy platform (C2P2) that enables the construction of a Wth-privacy-preserving monitoring service without cloud dependency. C2P2 uses an image classification model of a target serving as the key to access the monitoring service specific to the target. In C2P2, communication is based on information-centric networking (ICN) that enables privacy preservation to be centered on the content itself rather than relying on a centralized system. Moreover, to preserve the privacy of bystanders, C2P2 separates the sensitive information (e.g., human faces) from the non-sensitive information (e.g., image background), while the privacy-aware forwarding strategies in C2P2 enable data aggregation and prevent privacy leakage resulting from false positive of image recognition. We evaluate the privacy leakage of C2P2 compared to that of the cloud-based system. The privacy analysis shows that, compared to the cloud-based system, C2P2 achieves a lower privacy loss ratio while reducing the communication cost significantly.
Srinivasan, Shruthi, Mazumdar, Arka Prokash.  2019.  Mitigating Content Poisoning in Content Centric Network: A Lightweight Approach. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.
The internet paradigm was designed to forward packets from host-to-host. But nowadays the focal point has moved to data. The Internet Centric Network (ICN) provides architectures to meet this requirement. The Content Centric Network (CCN) is the most widely used ICN architecture. Information Centric Network's ability to perform in-network caching lead to faster retrieval of data on subsequent request. Although latency is solved, caching in a router makes it vulnerable to attacks that focus on the cache. One such attack is content poisoning, that will fill the router with poisoned content making the end user difficult to retrieve original valid data. In this paper, we propose a solution to mitigate content poisoning attack that will consume minimum time and require minimal storage overhead during the verification process.
Shen, Qili, Wu, Jun, Li, Jianhua.  2019.  Edge Learning Based Green Content Distribution for Information-Centric Internet of Things. 2019 42nd International Conference on Telecommunications and Signal Processing (TSP). :67–70.
Being the revolutionary future networking architecture, information-centric networking (ICN) conducts network distribution based on content, which is ideally suitable for Internet of things (IoT). With the rapid growth of network traffic, compared to the conventional IoT, information-centric Internet of things (IC-IoT) is expected to provide users with the better satisfaction of the network quality of service (QoS). However, due to IC-IoT requirements of low latency, large data volume, marginalization, and intelligent processing, it urgently needs an efficient content distribution system. In this paper, we propose an edge learning based green content distribution scheme for IC-IoT. We implement intelligent path selection based on decision tree and edge calculation. Moreover, we apply distributed coding based content transmission to enhance the speed and recovery capability of content. Meanwhile, we have verified the effectiveness and performance of this scheme based on a large number of simulation experiments. The work of this paper is of great significance to improve the efficiency and flexibility of content distribution in IC-IoT.
Saadeh, Huda, Almobaideen, Wesam, Sabri, Khair Eddin, Saadeh, Maha.  2019.  Hybrid SDN-ICN Architecture Design for the Internet of Things. 2019 Sixth International Conference on Software Defined Systems (SDS). :96–101.
Internet of Things (IoT) impacts the current network with many challenges due to the variation, heterogeneity of its devices and running technologies. For those reasons, monitoring and controlling network efficiently can rise the performance of the network and adapts network techniques according to environment measurements. This paper proposes a new privacy aware-IoT architecture that combines the benefits of both Information Centric Network (ICN) and Software Defined Network (SDN) paradigms. In this architecture controlling functionalities are distributed over multiple planes: operational plane which is considered as smart ICN data plane with Controllers that control local clusters, tactical plane which is an Edge environment to take controlling decisions based on small number of clusters, and strategic plane which is a cloud controlling environment to make long-term decision that affects the whole network. Deployment options of this architecture is discussed and SDN enhancement due to in-network caching is evaluated.
Pahl, Marc-Oliver, Liebald, Stefan.  2019.  Information-Centric IoT Middleware Overlay: VSL. 2019 International Conference on Networked Systems (NetSys). :1–8.
The heart of the Internet of Things (IoT) is data. IoT services processes data from sensors that interface their physical surroundings, and from other software such as Internet weather databases. They produce data to control physical environments via actuators, and offer data to other services. More recently, service-centric designs for managing the IoT have been proposed. Data-centric or name-based communication architectures complement these developments very well. Especially for edge-based or site-local installations, data-centric Internet architectures can be implemented already today, as they do not require any changes at the core. We present the Virtual State Layer (VSL), a site-local data-centric architecture for the IoT. Special features of our solution are full separation of logic and data in IoT services, offering the data-centric VSL interface directly to developers, which significantly reduces the overall system complexity, explicit data modeling, a semantically-rich data item lookup, stream connections between services, and security-by-design. We evaluate our solution regarding usability, performance, scalability, resilience, energy efficiency, and security.
Mai, Hoang Long, Aouadj, Messaoud, Doyen, Guillaume, Mallouli, Wissam, de Oca, Edgardo Montes, Festor, Olivier.  2019.  Toward Content-Oriented Orchestration: SDN and NFV as Enabling Technologies for NDN. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :594–598.
Network Function Virtualization (NFV) is a novel paradigm which enables the deployment of network functions on commodity hardware. As such, it also stands for a deployment en-abler for any novel networking function or networking paradigm such as Named Data Networking (NDN), the most promising solution relying on the Information-Centric Networking (ICN) paradigm. However, dedicated solutions for the security and performance orchestration of such an emerging paradigm are still lacking thus preventing its adoption by network operators. In this paper, we propose a first step toward a content-oriented orchestration whose purpose is to deploy, manage and secure an NDN virtual network. We present the way we leverage the TOSCA standard, using a crafted NDN oriented extension to enable the specification of both deployment and operational behavior requirements of NDN services. We also highlight NDN-related security and performance policies to produce counter-measures against anomalies that can either come from attacks or performance incidents.
Liu, Yi, Dong, Mianxiong, Ota, Kaoru, Wu, Jun, Li, Jianhua, Chen, Hao.  2019.  SCTD: Smart Reasoning Based Content Threat Defense in Semantics Knowledge Enhanced ICN. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
Information-centric networking (ICN) is a novel networking architecture with subscription-based naming mechanism and efficient caching, which has abundant semantic features. However, existing defense studies in ICN fails to isolate or block efficiently novel content threats including malicious penetration and semantic obfuscation for the lack of researches considering ICN semantic features. More importantly, to detect potential threats, existing security works in ICN fail to use semantic reasoning to construct security knowledge-based defense mechanism. Thus ICN needs a smart and content-based defense mechanism. Current works are not able to block content threats implicated in semantics. Additionally, based on traditional computing resources, they are incompatible with ICN protocols. In this paper, we propose smart reasoning based content threat defense for semantics knowledge enhanced ICN. A fog computing based defense mechanism with content semantic awareness is designed to build ICN edge defense system. In addition, smart reasoning algorithms is proposed to detect implicit knowledge and semantic relations in packet names and contents with context communication content and knowledge graph. On top of inference knowledge, the mechanism can perceive threats from ICN interests. Simulations demonstrate the validity and efficiency of the proposed mechanism.
Cui, Liqun, Dong, Mianxiong, Ota, Kaoru, Wu, Jun, Li, Jianhua, Wu, Yang.  2019.  NSTN: Name-Based Smart Tracking for Network Status in Information-Centric Internet of Things. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
Internet of Things(IoT) is an important part of the new generation of information technology and an important stage of development in the era of informatization. As a next generation network, Information Centric Network (ICN) has been introduced into the IoT, leading to the content independence of IC-IoT. To manage the changing network conditions and diagnose the cause of anomalies within it, network operators must obtain and analyze network status information from monitoring tools. However, traditional network supervision method will not be applicable to IC-IoT centered on content rather than IP. Moreover, the surge in information volume will also bring about insufficient information distribution, and the data location in the traditional management information base is fixed and cannot be added or deleted. To overcome these problems, we propose a name-based smart tracking system to store network state information in the IC-IoT. Firstly, we design a new structure of management information base that records various network state information and changes its naming format. Secondly, we use a tracking method to obtain the required network status information. When the manager issues a status request, each data block has a defined data tracking table to record past requests, the location of the status data required can be located according to it. Thirdly, we put forward an adaptive network data location replacement strategy based on the importance of stored data blocks, so that the information with higher importance will be closer to the management center for more efficient acquisition. Simulation results indicate the feasibility of the proposed scheme.
Benmoussa, Ahmed, Tahari, Abdou el Karim, Lagaa, Nasreddine, Lakas, Abderrahmane, Ahmad, Farhan, Hussain, Rasheed, Kerrache, Chaker Abdelaziz, Kurugollu, Fatih.  2019.  A Novel Congestion-Aware Interest Flooding Attacks Detection Mechanism in Named Data Networking. 2019 28th International Conference on Computer Communication and Networks (ICCCN). :1–6.
Named Data Networking (NDN) is a promising candidate for future internet architecture. It is one of the implementations of the Information-Centric Networking (ICN) architectures where the focus is on the data rather than the owner of the data. While the data security is assured by definition, these networks are susceptible of various Denial of Service (DoS) attacks, mainly Interest Flooding Attacks (IFA). IFAs overwhelm an NDN router with a huge amount of interests (Data requests). Various solutions have been proposed in the literature to mitigate IFAs; however; these solutions do not make a difference between intentional and unintentional misbehavior due to the network congestion. In this paper, we propose a novel congestion-aware IFA detection and mitigation solution. We performed extensive simulations and the results clearly depict the efficiency of our proposal in detecting truly occurring IFA attacks.
2019-08-05
Marchal, Xavier, Cholez, Thibault, Festor, Olivier.  2018.  $M$NDN: An Orchestrated Microservice Architecture for Named Data Networking. Proceedings of the 5th ACM Conference on Information-Centric Networking. :12-23.

As an extension of Network Function Virtualization, microservice architectures are a promising way to design future network services. At the same time, Information-Centric Networking architectures like NDN would benefit from this paradigm to offer more design choices for the network architect while facilitating the deployment and the operation of the network. We propose $μ$NDN, an orchestrated suite of microservices as an alternative way to implement NDN forwarding and support functions. We describe seven essential micro-services we developed, explain the design choices behind our solution and how it is orchestrated. We evaluate each service in isolation and the entire microservice architecture through two realistic scenarios to show its ability to react and mitigate some performance and security issues thanks to the orchestration. Our results show that $μ$NDN can replace a monolithic NDN forwarder while being more powerful and scalable.

Sertbaş, Nurefşan, Aytaç, Samet, Ermiş, Orhan, Alagöz, Fatih, Gür, Gürkan.  2018.  Attribute Based Content Security and Caching in Information Centric IoT. Proceedings of the 13th International Conference on Availability, Reliability and Security. :34:1–34:8.

Information-centric networking (ICN) is a Future Internet paradigm which uses named information (data objects) instead of host-based end-to-end communications. In-network caching is a key pillar of ICN. Basically, data objects are cached in ICN routers and retrieved from these network elements upon availability when they are requested. It is a particularly promising networking approach due to the expected benefits of data dissemination efficiency, reduced delay and improved robustness for challenging communication scenarios in IoT domain. From the security perspective, ICN concentrates on securing data objects instead of ensuring the security of end-to-end communication link. However, it inherently involves the security challenge of access control for content. Thus, an efficient access control mechanism is crucial to provide secure information dissemination. In this work, we investigate Attribute Based Encryption (ABE) as an access control apparatus for information centric IoT. Moreover, we elaborate on how such a system performs for different parameter settings such as different numbers of attributes and file sizes.

Mai, H. L., Nguyen, T., Doyen, G., Cogranne, R., Mallouli, W., Oca, E. M. de, Festor, O..  2018.  Towards a security monitoring plane for named data networking and its application against content poisoning attack. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1–9.

Named Data Networking (NDN) is the most mature proposal of the Information Centric Networking paradigm, a clean-slate approach for the Future Internet. Although NDN was designed to tackle security issues inherent to IP networks natively, newly introduced security attacks in its transitional phase threaten NDN's practical deployment. Therefore, a security monitoring plane for NDN is indispensable before any potential deployment of this novel architecture in an operating context by any provider. We propose an approach for the monitoring and anomaly detection in NDN nodes leveraging Bayesian Network techniques. A list of monitored metrics is introduced as a quantitative measure to feature the behavior of an NDN node. By leveraging the hypothesis testing theory, a micro detector is developed to detect whenever the metric significantly changes from its normal behavior. A Bayesian network structure that correlates alarms from micro detectors is designed based on the expert knowledge of the NDN specification and the NFD implementation. The relevance and performance of our security monitoring approach are demonstrated by considering the Content Poisoning Attack (CPA), one of the most critical attacks in NDN, through numerous experiment data collected from a real NDN deployment.

Xia, S., Li, N., Xiaofeng, T., Fang, C..  2018.  Multiple Attributes Based Spoofing Detection Using an Improved Clustering Algorithm in Mobile Edge Network. 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN). :242–243.

Information centric network (ICN) based Mobile Edge Computing (MEC) network has drawn growing attentions in recent years. The distributed network architecture brings new security problems, especially the identity security problem. Because of the cloud platform deployed on the edge of the MEC network, multiple channel attributes can be easily obtained and processed. Thus this paper proposes a multiple channel attributes based spoofing detection mechanism. To further reduce the complexity, we also propose an improved clustering algorithm. The simulation results indicate that the proposed spoofing detection method can provide near-optimal performance with extremely low complexity.

Mtsweni, Jabu, Gcaza, Noluxolo, Thaba, Mphahlele.  2018.  A Unified Cybersecurity Framework for Complex Environments. Proceedings of the Annual Conference of the South African Institute of Computer Scientists and Information Technologists. :1–9.
Information and Communication Technologies (ICTs) present a number of vulnerabilities, threats and risks that could lead to devastating cyber-attacks resulting into huge financial losses, legal implications, and reputational damage for large and small organizations. As such, in this digital transformation and 4th industrial revolution era, nations and organizations have accepted that cybersecurity must be part of their strategic objectives and priorities. However, cybersecurity in itself is a multifaceted problem to address and the voluntary "one-size-fits-all" cybersecurity approaches have proven not effective in dealing with cyber incidents, especially in complex operational environments (e.g. large technology-centric organizations) that are multi-disciplinary, multi-departmental, multi-role, multinational, and operating across different locations. Addressing modern cybersecurity challenges requires more than a technical solution. A contextual and systematic approach that considers the complexities of these large digital environments in order to achieve resilient, sustainable, cost-effective and proactive cybersecurity is desirable. This paper aims to highlight through a single case study approach the multifaceted nature and complexity of the cybersecurity environment, pertinently in multi-disciplinary organizations. Essentially, this paper contributes a unified cybersecurity framework underpinned by an integrated capability management (ICM) approach that addresses the multifaceted nature of cybersecurity as well as the challenges and requirements eminent in complex environments, such as national government, municipalities or large corporations. The unified framework incorporates realistic and practical guidelines to bridge the gap between cybersecurity capability requirements, governance instruments and cybersecurity capability specification, implementation, employment and sustainment drawing from well-tested military capability development approaches.
Yuen, W. P., Chuah, K. B..  2018.  Development of the Customer Centric Data Visibility Framework for the Enhancement of the Trust of SME Customers in Cloud Services. Proceedings of the 6th International Conference on Information and Education Technology. :221–225.
Cloud computing is a pervasive technology and platform in IT for several years. Cloud service providers have developed and offered different service platforms to accommodate different needs of enterprise subscribers. However, there still exists the situation of enterprise customers' hesitation and reluctance to deploy their core applications using cloud service platforms. The term data visibility has been widely used in the IT industry especially from ICT product and solution vendors. However, there is not any practice guideline, nor standard in industry to define this term. This paper defined the characteristic and dimensions of data visibility, from conceptual model to framework architecture of customer centric data visibility (CCDV) on cloud platform. It propose to apply CCDV as reference model or practice guideline on cloud computing service, with enhancement of data visibility which can earn the trust from enterprise customer in adopting public cloud service.
Zhang, Zhiyi, Lu, Edward, Li, Yanbiao, Zhang, Lixia, Yu, Tianyuan, Pesavento, Davide, Shi, Junxiao, Benmohamed, Lotfi.  2018.  NDNoT: A Framework for Named Data Network of Things. Proceedings of the 5th ACM Conference on Information-Centric Networking. :200–201.
The Named Data Networking (NDN) architecture provides simple solutions to the communication needs of Internet of Things (IoT) in terms of ease-of-use, security, and content delivery. To utilize the desirable properties of NDN architecture in IoT scenarios, we are working to provide an integrated framework, dubbed NDNoT, to support IoT over NDN. NDNoT provides solutions to auto configuration, service discovery, data-centric security, content delivery, and other needs of IoT application developers. Utilizing NDN naming conventions, NDNoT aims to create an open environment where IoT applications and different services can easily cooperate and work together. This poster introduces the basic components of our framework and explains how these components function together.
Chakraborti, Asit, Amin, Syed Obaid, Azgin, Aytac, Misra, Satyajayant, Ravindran, Ravishankar.  2018.  Using ICN Slicing Framework to Build an IoT Edge Network. Proceedings of the 5th ACM Conference on Information-Centric Networking. :214–215.
We demonstrate 5G network slicing as a unique deployment opportunity for information centric networking (ICN), by using a generic service orchestration framework that operates on commodity compute, storage, and bandwidth resource pools to realize ICN service slices. In this demo, we specifically propose a service slice for the IoT Edge network. ICN has often been considered pertinent for IoT use due to its benefits like simpler stacks on resource constrained devices, in-network caching, and in-built data provenance. We use a lightweight ICN stack on IoT devices connected with sensors and actuators to build a network, where clients can set realistic policies using their legacy hand-held devices. We employ name based authentication protocols between the service end-points and IoT devices to allow secure onboarding. The IoT slice co-exists with other service slices that cater to different classes of applications (e.g., bandwidth intensive applications, such as video conferencing) allowing resource management flexibility. Our design creates orchestrated service Edge functions to which the clients connect, and these can in turn utilize in-network stateless functions to perform tasks, such as decision making and analytics using the available compute resources efficiently.
Marchal, Xavier, Cholez, Thibault, Festor, Olivier.  2018.  ΜNDN: An Orchestrated Microservice Architecture for Named Data Networking. Proceedings of the 5th ACM Conference on Information-Centric Networking. :12–23.
As an extension of Network Function Virtualization, microservice architectures are a promising way to design future network services. At the same time, Information-Centric Networking architectures like NDN would benefit from this paradigm to offer more design choices for the network architect while facilitating the deployment and the operation of the network. We propose μNDN, an orchestrated suite of microservices as an alternative way to implement NDN forwarding and support functions. We describe seven essential micro-services we developed, explain the design choices behind our solution and how it is orchestrated. We evaluate each service in isolation and the entire microservice architecture through two realistic scenarios to show its ability to react and mitigate some performance and security issues thanks to the orchestration. Our results show that μNDN can replace a monolithic NDN forwarder while being more powerful and scalable.