Yamaguchi, A., Mizuno, O..
2020.
Reducing Processing Delay and Node Load Using Push-Based Information-Centric Networking. 2020 3rd World Symposium on Communication Engineering (WSCE). :59–63.
Information-Centric Networking (ICN) is attracting attention as a content distribution method against increasing network traffic. Content distribution in ICN adopts a pull-type communication method that returns data to Interest. However, in this case, the push-type communication method is advantageous. Therefore, the authors have proposed a method in which a server pushes content to reduce the node load in an environment where a large amount of Interest to specific content occurs in a short time. In this paper, we analyze the packet processing delay time with and without the proposed method in an environment where a router processes a large number of packets using a simulator. Simulation results show that the proposed method can reduce packet processing delay time and node load.
Nguyen, Q. N., Lopez, J., Tsuda, T., Sato, T., Nguyen, K., Ariffuzzaman, M., Safitri, C., Thanh, N. H..
2020.
Adaptive Caching for Beneficial Content Distribution in Information-Centric Networking. 2020 International Conference on Information Networking (ICOIN). :535–540.
Currently, little attention has been carried out to address the feasibility of in-network caching in Information-Centric Networking (ICN) for the design and real-world deployment of future networks. Towards this line, in this paper, we propose a beneficial caching scheme in ICN by storing no more than a specific number of replicas for each content. Particularly, to realize an optimal content distribution for deploying caches in ICN, a content can be cached either partially or as a full-object corresponding to its request arrival rate and data traffic. Also, we employ a utility-based replacement in each content node to keep the most recent and popular content items in the ICN interconnections. The evaluation results show that the proposal improves the cache hit rate and cache diversity considerably, and acts as a beneficial caching approach for network and service providers in ICN. Specifically, the proposed caching mechanism is easy to deploy, robust, and relevant for the content-based providers by enabling them to offer users high Quality of Service (QoS) and gain benefits at the same time.
Yang, Z., Li, X., Wei, L., Zhang, C., Gu, C..
2020.
SGX-ICN: A Secure and Privacy-Preserving Information-Centric Networking with SGX Enclaves. 2020 3rd International Conference on Hot Information-Centric Networking (HotICN). :142–147.
As the next-generation network architecture, Information-Centric Networking (ICN) has emerged as a novel paradigm to cope with the increasing demand for content delivery on the Internet. In contrast to the conventional host-centric architectures, ICN focuses on content retrieval based on their name rather than their storage location. However, ICN is vulnerable to various security and privacy attacks due to the inherent attributes of the ICN architectures. For example, a curious ICN node can monitor the network traffic to reveal the sensitive data issued by specific users. Hence, further research on privacy protection for ICN is needed. This paper presents a practical approach to effectively enhancing the security and privacy of ICN by utilizing Intel SGX, a commodity trusted execution environment. The main idea is to leverage secure enclaves residing on ICN nodes to do computations on sensitive data. Performance evaluations on the real-world datasets demonstrate the efficiency of the proposed scheme. Moreover, our scheme outperforms the cryptography based method.
Mori, S..
2020.
A Fundamental Analysis of Caching Data Protection Scheme using Light-weight Blockchain and Hashchain for Information-centric WSNs. 2020 2nd Conference on Blockchain Research Applications for Innovative Networks and Services (BRAINS). :200–201.
This paper explains a novel caching data protection scheme that uses lightweight blockchain and hashchain for information-centric wireless sensor networks. The proposed verification procedure in a Blockchain is conducted based on the proof-of-consensus validation mechanism without using exhaustive mining computations; therefore, our scheme is suitable for resource-shortage wireless and mobile devices. Hashchains are utilized for traceability and signatures that ensure a block's validity. We make a primitive evaluation of the scheme using computer simulations in familiar low-power wide-area wireless environments.
Lin, X., Zhang, Z., Chen, M., Sun, Y., Li, Y., Liu, M., Wang, Y., Liu, M..
2020.
GDGCA: A Gene Driven Cache Scheduling Algorithm in Information-Centric Network. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :167–172.
The disadvantages and inextensibility of the traditional network require more novel thoughts for the future network architecture, as for ICN (Information-Centric Network), is an information centered and self-caching network, ICN is deeply rooted in the 5G era, of which concept is user-centered and content-centered. Although the ICN enables cache replacement of content, an information distribution scheduling algorithm is still needed to allocate resources properly due to its limited cache capacity. This paper starts with data popularity, information epilepsy and other data related attributes in the ICN environment. Then it analyzes the factors affecting the cache, proposes the concept and calculation method of Gene value. Since the ICN is still in a theoretical state, this paper describes an ICN scenario that is close to the reality and processes a greedy caching algorithm named GDGCA (Gene Driven Greedy Caching Algorithm). The GDGCA tries to design an optimal simulation model, which based on the thoughts of throughput balance and satisfaction degree (SSD), then compares with the regular distributed scheduling algorithm in related research fields, such as the QoE indexes and satisfaction degree under different Poisson data volumes and cycles, the final simulation results prove that GDGCA has better performance in cache scheduling of ICN edge router, especially with the aid of Information Gene value.