Visible to the public Biblio

Filters: Keyword is Information Centric Networks  [Clear All Filters]
2023-08-25
Clark, Nicholas K..  2022.  Enhancing an Information-Centric Network of Things at the Internet Edge with Trust-Based Access Control. 2022 IEEE 8th World Forum on Internet of Things (WF-IoT). :1–6.
This work expands on our prior work on an architecture and supporting protocols to efficiently integrate constrained devices into an Information-Centric Network-based Internet of Things in a way that is both secure and scalable. In this work, we propose a scheme for addressing additional threats and integrating trust-based behavioral observations and attribute-based access control by leveraging the capabilities of less constrained coordinating nodes at the network edge close to IoT devices. These coordinating devices have better insight into the behavior of their constituent devices and access to a trusted overall security management cloud service. We leverage two modules, the security manager (SM) and trust manager (TM). The former provides data confidentiality, integrity, authentication, and authorization, while the latter analyzes the nodes' behavior using a trust model factoring in a set of service and network communication attributes. The trust model allows trust to be integrated into the SM's access control policies, allowing access to resources to be restricted to trusted nodes.
Li, Bing, Ma, Maode, Zhang, Yonghe, Lai, Feiyu.  2022.  Access Control Supported by Information Service Entity in Named Data Networking. 2022 5th International Conference on Hot Information-Centric Networking (HotICN). :30–35.
Named Data Networking (NDN) has been viewed as a promising future Internet architecture. It requires a new access control scheme to prevent the injection of unauthorized data request. In this paper, an access control supported by information service entity (ACISE) is proposed for NDN networks. A trust entity, named the information service entity (ISE), is deployed in each domain for the registration of the consumer and the edge router. The identity-based cryptography (IBC) is used to generate a private key for the authorized consumer at the ISE and to calculate a signature encapsulated in the Interest packet at the consumer. Therefore, the edge router could support the access control by the signature verification of the Interest packets so that no Interest packet from unauthorized consumer could be forwarded or replied. Moreover, shared keys are negotiated between authorized consumers and their edge routers. The subsequent Interest packets would be verified by the message authentication code (MAC) instead of the signature. The simulation results have shown that the ACISE scheme would achieve a similar response delay to the original NDN scheme when the NDN is under no attacks. However, the ACISE scheme is immune to the cache pollution attacks so that it could maintain a much smaller response delay compared to the other schemes when the NDN network is under the attacks.
ISSN: 2831-4395
Riyanto, Supangkat, Suhono Harso, Iskandar.  2022.  Survey on MAC Protocol of Mobile Ad hoc Network for Tactical Data Link System. 2022 International Conference on Information Technology Systems and Innovation (ICITSI). :134–137.
Tactical Data Link (TDL) is one of the important elements in Network Centric Warfare (NCW). TDL provides the means for rapid exchange of tactical information between air, ground, sea units and command centers. In military operations, TDL has high demands for resilience, responsiveness, reliability, availability and security. MANET has characteristics that are suitable for the combat environment, namely the ability to self-form and self-healing so that this network may be applied to the TDL system. To produce high performance in MANET adapted for TDL system, an efficient MAC Protocol method is needed. This paper provides a survey of several MAC Protocol methods on a tactical MANET. In this paper also suggests some improvements to the MANET MAC protocol to improve TDL system performance.
Zhang, Xue, Wei, Liang, Jing, Shan, Zhao, Chuan, Chen, Zhenxiang.  2022.  SDN-Based Load Balancing Solution for Deterministic Backbone Networks. 2022 5th International Conference on Hot Information-Centric Networking (HotICN). :119–124.
Traffic in a backbone network has high forwarding rate requirements, and as the network gets larger, traffic increases and forwarding rates decrease. In a Software Defined Network (SDN), the controller can manage a global view of the network and control the forwarding of network traffic. A deterministic network has different forwarding requirements for the traffic of different priority levels. Static traffic load balancing is not flexible enough to meet the needs of users and may lead to the overloading of individual links and even network collapse. In this paper, we propose a new backbone network load balancing architecture - EDQN (Edge Deep Q-learning Network), which implements queue-based gate-shaping algorithms at the edge devices and load balancing of traffic on the backbone links. With the advantages of SDN, the link utilization of the backbone network can be improved, the delay in traffic transmission can be reduced and the throughput of traffic during transmission can be increased.
ISSN: 2831-4395
Liang, Bowen, Tian, Jianye, Zhu, Yi.  2022.  A Named In-Network Computing Service Deployment Scheme for NDN-Enabled Software Router. 2022 5th International Conference on Hot Information-Centric Networking (HotICN). :25–29.
Named in-network computing is an emerging technology of Named Data Networking (NDN). Through deploying the named computing services/functions on NDN router, the router can utilize its free resources to provide nearby computation for users while relieving the pressure of cloud and network edge. Benefitted from the characteristic of named addressing, named computing services/functions can be easily discovered and migrated in the network. To implement named in-network computing, integrating the computing services as Virtual Machines (VMs) into the software router is a feasible way, but how to effectively deploy the service VMs to optimize the local processing capability is still a challenge. Focusing on this problem, we first give the design of NDN-enabled software router in this paper, then propose a service earning based named service deployment scheme (SE-NSD). For available service VMs, SE-NSD not only considers their popularities but further evaluates their service earnings (processed data amount per CPU cycle). Through modelling the deployment problem as the knapsack problem, SE-NSD determines the optimal service VMs deployment scheme. The simulation results show that, comparing with the popularity-based deployment scheme, SE-NSD can promote about 30% in-network computing capability while slightly reducing the service invoking RTT of user.
ISSN: 2831-4395
Hu, Yujiao, Jia, Qingmin, Liu, Hui, Zhou, Xiaomao, Lai, Huayao, Xie, Renchao.  2022.  3CL-Net: A Four-in-One Networking Paradigm for 6G System. 2022 5th International Conference on Hot Information-Centric Networking (HotICN). :132–136.
The 6G wireless communication networks are being studied to build a powerful networking system with global coverage, enhanced spectral/energy/cost efficiency, better intelligent level and security. This paper presents a four-in-one networking paradigm named 3CL-Net that would broaden and strengthen the capabilities of current networking by introducing ubiquitous computing, caching, and intelligence over the communication connection to build 6G-required capabilities. To evaluate the practicability of 3CL-Net, this paper designs a platform based on the 3CL-Net architecture. The platform adopts leader-followers structure that could support all functions of 3CL-Net, but separate missions of 3CL-Net into two parts. Moreover, this paper has implemented part of functions as a prototype, on which some experiments are carried out. The results demonstrate that 3CL-Net is potential to be a practical and effective network paradigm to meet future requirements, meanwhile, 3CL-Net could motivate designs of related platforms as well.
ISSN: 2831-4395
Hassan, Muhammad, Pesavento, Davide, Benmohamed, Lotfi.  2022.  Blockchain-Based Decentralized Authentication for Information-Centric 5G Networks. 2022 IEEE 47th Conference on Local Computer Networks (LCN). :299–302.
The 5G research community is increasingly leveraging the innovative features offered by Information Centric Networking (ICN). However, ICN’s fundamental features, such as in-network caching, make access control enforcement more challenging in an ICN-based 5G deployment. To address this shortcoming, we propose a Blockchain-based Decentralized Authentication Protocol (BDAP) which enables efficient and secure mobile user authentication in an ICN-based 5G network. We show that BDAP is robust against a variety of attacks to which mobile networks and blockchains are particularly vulnerable. Moreover, a preliminary performance analysis suggests that BDAP can reduce the authentication delay compared to the standard 5G authentication protocols.
ISSN: 0742-1303
Safitri, Cutifa, Nguyen, Quang Ngoc, Anugerah Ayu, Media, Mantoro, Teddy.  2022.  Robust Implementation of ICN-based Mobile IoT for Next-Generation Network. 2022 IEEE 8th International Conference on Computing, Engineering and Design (ICCED). :1–5.
This paper proposes a Mobile IoT optimization method for Next-Generation networks by evaluating a series of named-based techniques implemented in Information-Centric Networking (ICN). The idea is based on the possibility to have a more suitable naming and forwarding mechanism to be implemented in IoT. The main advantage of the method is in achieving a higher success packet rate and data rate by following the proposed technique even when the device is mobile / roaming around. The proposed technique is utilizing a root prefix naming which allows faster process and dynamic increase for content waiting time in Pending Interest Table (PIT). To test the idea, a simulation is carried out by mimicking how IoT can be implemented, especially in smart cities, where a user can also travel and not be static. Results show that the proposed technique can achieve up to a 13% interest success rate and an 18.7% data rate increase compared to the well-known implementation algorithms. The findings allow for possible further cooperation of data security factors and ensuring energy reduction through leveraging more processes at the edge node.
ISSN: 2767-7826
Deshmukh, Kshitij, Jain, Avani, Singh, Shubhangi, Bhattacharya, Pronaya, Prasad, Vivek, Zuhair, Mohd.  2022.  A Secured Dialog Protocol Scheme Over Content Centric Networks. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). :95–101.
Internet architecture has transformed into a more complex form than it was about a decade back. Today the internet comprises multimedia information where services and web applications have started to shift their focus on content. In our perspective of communication systems, content-centric networking (CCN) proposes a new methodology. The use of cache memory at the network level is an important feature of this new architecture. This cache is intended to store transit details for a set period, and it is hoped that this capability will aid in network quality, especially in a rapidly increasing video streaming situation. Information-centric networking (ICN) is the one architecture that is seen as a possible alternative for shifting the Internet from a host-centric to a content-centric point-of-view. It focuses on data rather than content. CCN is more reliable when it comes to data delivery as it does not need to depend on location for data. CCN architecture is scalable, secure and provides mobility support. In this paper, we implement a ccnchat, a chat testing application, which is created with the help of libraries provided by Palo Alto Research Center (PARC) on local area network (LAN) between two users and demonstrate the working of this local chat application over CCN network that works alongside existing IP infrastructure.
2023-07-28
Ksibi, Sondes, JAIDI, Faouzi, BOUHOULA, Adel.  2022.  A User-Centric Fuzzy AHP-based Method for Medical Devices Security Assessment. 2022 15th International Conference on Security of Information and Networks (SIN). :01—07.

One of the most challenging issues facing Internet of Medical Things (IoMT) cyber defense is the complexity of their ecosystem coupled with the development of cyber-attacks. Medical equipments lack built-in security and are increasingly becoming connected. Moving beyond traditional security solutions becomes a necessity to protect patients and organizations. In order to effectively deal with the security risks of networked medical devices in such a complex and heterogeneous system, we need to measure security risks and prioritize mitigation actions. In this context, we propose a Fuzzy AHP-based method to assess security attributes of connected medical devices and compare different device models against a selected profile with regards to the user requirements. The proposal aims to empower user security awareness to make well-educated decisions.

2022-05-24
Grewe, Dennis, Wagner, Marco, Ambalavanan, Uthra, Liu, Liming, Nayak, Naresh, Schildt, Sebastian.  2021.  On the Design of an Information-Centric Networking Extension for IoT APIs. 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall). :1–6.
Both the Internet of Things (IoT) and Information Centric Networking (ICN) have gathered a lot of attention from both research and industry in recent years. While ICN has proved to be beneficial in many situations, it is not widely deployed outside research projects, also not addressing needs of IoT application programming interfaces (APIs). On the other hand, today's IoT solutions are built on top of the host-centric communication model associated with the usage of the Internet Protocol (IP). This paper contributes a discussion on the need of an integration of a specific form of IoT APIs, namely WebSocket based streaming APIs, into an ICN. Furthermore, different access models are discussed and requirements are derived from real world APIs. Finally, the design of an ICN-style extension is presented using one of the examined APIs.
Safitri, Cutifa, Nguyen, Quang Ngoc, Deo Lumoindong, Christoforus Williem, Ayu, Media Anugerah, Mantoro, Teddy.  2021.  Advanced Forwarding Strategy Towards Delay Tolerant Information-Centric Networking. 2021 IEEE 7th International Conference on Computing, Engineering and Design (ICCED). :1–5.
Information-Centric Networking (ICN) is among the promising architecture that can drive the need and versatility towards the future generation (xG) needs. In the future, support for network communication relies on the area of telemedicine, autonomous vehicles, and disaster recovery. In the disaster recovery case, there is a high possibility where the communication path is severed. Multicast communication and DTN-friendly route algorithm are becoming suitable options to send a packet message to get a faster response and to see any of the nodes available for service, this approach could give burden to the core network. Also, during disaster cases, many people would like to communicate, receive help, and find family members. Flooding the already disturbed/severed network will further reduce communication performance efficiency even further. Thus, this study takes into consideration prioritization factors to allow networks to process and delivering priority content. For this purpose, the proposed technique introduces the Routable Prefix Identifier (RP-ID) that takes into account the prioritization factor to enable optimization in Delay Tolerant ICN communication.
Huang, Yudong, Wang, Shuo, Feng, Tao, Wang, Jiasen, Huang, Tao, Huo, Ru, Liu, Yunjie.  2021.  Towards Network-Wide Scheduling for Cyclic Traffic in IP-based Deterministic Networks. 2021 4th International Conference on Hot Information-Centric Networking (HotICN). :117–122.
The emerging time-sensitive applications, such as industrial automation, smart grids, and telesurgery, pose strong demands for enabling large-scale IP-based deterministic networks. The IETF DetNet working group recently proposes a Cycle Specified Queuing and Forwarding (CSQF) solution. However, CSQF only specifies an underlying device-level primitive while how to achieve network-wide flow scheduling remains undefined. Previous scheduling mechanisms are mostly oriented to the context of local area networks, making them inapplicable to the cyclic traffic in wide area networks. In this paper, we design the Cycle Tags Planning (CTP) mechanism, a first mathematical model to enable network-wide scheduling for cyclic traffic in large-scale deterministic networks. Then, a novel scheduling algorithm named flow offset and cycle shift (FO-CS) is designed to compute the flows' cycle tags. The FO-CS algorithm is evaluated under long-distance network topologies in remote industrial control scenarios. Compared with the Naive algorithm without using FO-CS, simulation results demonstrate that FO-CS improves the scheduling flow number by 31.2% in few seconds.
Nakamura, Ryo, Kamiyama, Noriaki.  2021.  Proposal of Keyword-Based Information-Centric Delay-Tolerant Network. 2021 IEEE International Workshop Technical Committee on Communications Quality and Reliability (CQR 2021). :1–7.
In this paper, we focus on Information-Centric Delay-Tolerant Network (ICDTN), which incorporates the communication paradigm of Information-Centric Networking (ICN) into Delay-Tolerant Networking (DTN). Conventional ICNs adopt a naming scheme that names the content with the content identifier. However, a past study proposed an alternative naming scheme that describes the name of content with the content descriptor. We believe that, in ICDTN, it is more suitable to utilize the approach using the content descriptor. In this paper, we therefore propose keyword-based ICDTN that resolves content requests and deliveries contents based on keywords, i.e., content descriptor, in the request and response messages.
Lei, Kai, Ye, Hao, Liang, Yuzhi, Xiao, Jing, Chen, Peiwu.  2021.  Towards a Translation-Based Method for Dynamic Heterogeneous Network Embedding. ICC 2021 - IEEE International Conference on Communications. :1–6.
Network embedding, which aims to map the discrete network topology to a continuous low-dimensional representation space with the major topological properties preserved, has emerged as an essential technique to support various network inference tasks. However, incorporating both the evolutionary nature and the network's heterogeneity remains a challenge for existing network embedding methods. In this study, we propose a novel Translation-Based Dynamic Heterogeneous Network Embedding (TransDHE) approach to consider both the aspects simultaneously. For a dynamic heterogeneous network with a sequence of snapshots and multiple types of nodes and edges, we introduce a translation-based embedding module to capture the heterogeneous characteristics (e.g., type information) of each single snapshot. An orthogonal alignment module and RNN-based aggregation module are then applied to explore the evolutionary patterns among multiple successive snapshots for the final representation learning. Extensive experiments on a set of real-world networks demonstrate that TransDHE can derive the more informative embedding result for the network dynamic and heterogeneity over state-of-the-art network embedding baselines.
Fazea, Yousef, Mohammed, Fathey, Madi, Mohammed, Alkahtani, Ammar Ahmed.  2021.  Review on Network Function Virtualization in Information-Centric Networking. 2021 International Conference of Technology, Science and Administration (ICTSA). :1–6.
Network function virtualization (NFV / VNF) and information-centric networking (ICN) are two trending technologies that have attracted expert's attention. NFV is a technique in which network functions (NF) are decoupling from commodity hardware to run on to create virtual communication services. The virtualized class nodes can bring several advantages such as reduce Operating Expenses (OPEX) and Capital Expenses (CAPEX). On the other hand, ICN is a technique that breaks the host-centric paradigm and shifts the focus to “named information” or content-centric. ICN provides highly efficient content retrieval network architecture where popular contents are cached to minimize duplicate transmissions and allow mobile users to access popular contents from caches of network gateways. This paper investigates the implementation of NFV in ICN. Besides, reviewing and discussing the weaknesses and strengths of each architecture in a critical analysis manner of both network architectures. Eventually, highlighted the current issues and future challenges of both architectures.
Pellenz, Marcelo E., Lachowski, Rosana, Jamhour, Edgard, Brante, Glauber, Moritz, Guilherme Luiz, Souza, Richard Demo.  2021.  In-Network Data Aggregation for Information-Centric WSNs using Unsupervised Machine Learning Techniques. 2021 IEEE Symposium on Computers and Communications (ISCC). :1–7.
IoT applications are changing our daily lives. These innovative applications are supported by new communication technologies and protocols. Particularly, the information-centric network (ICN) paradigm is well suited for many IoT application scenarios that involve large-scale wireless sensor networks (WSNs). Even though the ICN approach can significantly reduce the network traffic by optimizing the process of information recovery from network nodes, it is also possible to apply data aggregation strategies. This paper proposes an unsupervised machine learning-based data aggregation strategy for multi-hop information-centric WSNs. The results show that the proposed algorithm can significantly reduce the ICN data traffic while having reduced information degradation.
Raza, Khuhawar Arif, Asheralieva, Alia, Karim, Md Monjurul, Sharif, Kashif, Gheisari, Mehdi, Khan, Salabat.  2021.  A Novel Forwarding and Caching Scheme for Information-Centric Software-Defined Networks. 2021 International Symposium on Networks, Computers and Communications (ISNCC). :1–8.

This paper integrates Software-Defined Networking (SDN) and Information -Centric Networking (ICN) framework to enable low latency-based stateful routing and caching management by leveraging a novel forwarding and caching strategy. The framework is implemented in a clean- slate environment that does not rely on the TCP/IP principle. It utilizes Pending Interest Tables (PIT) instead of Forwarding Information Base (FIB) to perform data dissemination among peers in the proposed IC-SDN framework. As a result, all data exchanged and cached in the system are organized in chunks with the same interest resulting in reduced packet overhead costs. Additionally, we propose an efficient caching strategy that leverages in- network caching and naming of contents through an IC-SDN controller to support off- path caching. The testbed evaluation shows that the proposed IC-SDN implementation achieves an increased throughput and reduced latency compared to the traditional information-centric environment, especially in the high load scenarios.

Sukjaimuk, Rungrot, Nguyen, Quang N., Sato, Takuro.  2021.  An Efficient Congestion Control Model utilizing IoT wireless sensors in Information-Centric Networks. 2021 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering. :210–213.
Congestion control is one of the essential keys to enhance network efficiency so that the network can perform well even in the case of packet drop. This problem is even more challenging in Information-Centric Networking (ICN), a typical Future Internet design, which employs the packet flooding policy for forwarding the information. To diminish the high traffic load due to the huge number of packets in the era of the Internet of Things (IoT), this paper proposes an effective caching and forwarding algorithm to diminish the congestion rate of the IoT wireless sensor in ICN. The proposed network system utilizes accumulative popularity-based delay transmission time for forwarding strategy and includes the consecutive chunks-based segment caching scheme. The evaluation results using ndnSIM, a widely-used ns-3 based ICN simulator, demonstrated that the proposed system can achieve less interest packet drop rate, more cache hit rate, and higher network throughput, compared to the relevant ICN-based benchmarks. These results prove that the proposed ICN design can achieve higher network efficiency with a lower congestion rate than that of the other related ICN systems using IoT sensors.
Fazea, Yousef, Mohammed, Fathey.  2021.  Software Defined Networking based Information Centric Networking: An Overview of Approaches and Challenges. 2021 International Congress of Advanced Technology and Engineering (ICOTEN). :1–8.
ICN (Information-Centric Networking) is a traditional networking approach which focuses on Internet design, while SDN (Software Defined Networking) is known as a speedy and flexible networking approach. Integrating these two approaches can solve different kinds of traditional networking problems. On the other hand, it may expose new challenges. In this paper, we study how these two networking approaches are been combined to form SDN-based ICN architecture to improve network administration. Recent research is explored to identify the SDN-based ICN challenges, provide a critical analysis of the current integration approaches, and determine open issues for further research.
2021-04-08
Yamaguchi, A., Mizuno, O..  2020.  Reducing Processing Delay and Node Load Using Push-Based Information-Centric Networking. 2020 3rd World Symposium on Communication Engineering (WSCE). :59–63.
Information-Centric Networking (ICN) is attracting attention as a content distribution method against increasing network traffic. Content distribution in ICN adopts a pull-type communication method that returns data to Interest. However, in this case, the push-type communication method is advantageous. Therefore, the authors have proposed a method in which a server pushes content to reduce the node load in an environment where a large amount of Interest to specific content occurs in a short time. In this paper, we analyze the packet processing delay time with and without the proposed method in an environment where a router processes a large number of packets using a simulator. Simulation results show that the proposed method can reduce packet processing delay time and node load.
Nguyen, Q. N., Lopez, J., Tsuda, T., Sato, T., Nguyen, K., Ariffuzzaman, M., Safitri, C., Thanh, N. H..  2020.  Adaptive Caching for Beneficial Content Distribution in Information-Centric Networking. 2020 International Conference on Information Networking (ICOIN). :535–540.
Currently, little attention has been carried out to address the feasibility of in-network caching in Information-Centric Networking (ICN) for the design and real-world deployment of future networks. Towards this line, in this paper, we propose a beneficial caching scheme in ICN by storing no more than a specific number of replicas for each content. Particularly, to realize an optimal content distribution for deploying caches in ICN, a content can be cached either partially or as a full-object corresponding to its request arrival rate and data traffic. Also, we employ a utility-based replacement in each content node to keep the most recent and popular content items in the ICN interconnections. The evaluation results show that the proposal improves the cache hit rate and cache diversity considerably, and acts as a beneficial caching approach for network and service providers in ICN. Specifically, the proposed caching mechanism is easy to deploy, robust, and relevant for the content-based providers by enabling them to offer users high Quality of Service (QoS) and gain benefits at the same time.
Yang, Z., Li, X., Wei, L., Zhang, C., Gu, C..  2020.  SGX-ICN: A Secure and Privacy-Preserving Information-Centric Networking with SGX Enclaves. 2020 3rd International Conference on Hot Information-Centric Networking (HotICN). :142–147.
As the next-generation network architecture, Information-Centric Networking (ICN) has emerged as a novel paradigm to cope with the increasing demand for content delivery on the Internet. In contrast to the conventional host-centric architectures, ICN focuses on content retrieval based on their name rather than their storage location. However, ICN is vulnerable to various security and privacy attacks due to the inherent attributes of the ICN architectures. For example, a curious ICN node can monitor the network traffic to reveal the sensitive data issued by specific users. Hence, further research on privacy protection for ICN is needed. This paper presents a practical approach to effectively enhancing the security and privacy of ICN by utilizing Intel SGX, a commodity trusted execution environment. The main idea is to leverage secure enclaves residing on ICN nodes to do computations on sensitive data. Performance evaluations on the real-world datasets demonstrate the efficiency of the proposed scheme. Moreover, our scheme outperforms the cryptography based method.
Mori, S..  2020.  A Fundamental Analysis of Caching Data Protection Scheme using Light-weight Blockchain and Hashchain for Information-centric WSNs. 2020 2nd Conference on Blockchain Research Applications for Innovative Networks and Services (BRAINS). :200–201.
This paper explains a novel caching data protection scheme that uses lightweight blockchain and hashchain for information-centric wireless sensor networks. The proposed verification procedure in a Blockchain is conducted based on the proof-of-consensus validation mechanism without using exhaustive mining computations; therefore, our scheme is suitable for resource-shortage wireless and mobile devices. Hashchains are utilized for traceability and signatures that ensure a block's validity. We make a primitive evaluation of the scheme using computer simulations in familiar low-power wide-area wireless environments.
Lin, X., Zhang, Z., Chen, M., Sun, Y., Li, Y., Liu, M., Wang, Y., Liu, M..  2020.  GDGCA: A Gene Driven Cache Scheduling Algorithm in Information-Centric Network. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :167–172.
The disadvantages and inextensibility of the traditional network require more novel thoughts for the future network architecture, as for ICN (Information-Centric Network), is an information centered and self-caching network, ICN is deeply rooted in the 5G era, of which concept is user-centered and content-centered. Although the ICN enables cache replacement of content, an information distribution scheduling algorithm is still needed to allocate resources properly due to its limited cache capacity. This paper starts with data popularity, information epilepsy and other data related attributes in the ICN environment. Then it analyzes the factors affecting the cache, proposes the concept and calculation method of Gene value. Since the ICN is still in a theoretical state, this paper describes an ICN scenario that is close to the reality and processes a greedy caching algorithm named GDGCA (Gene Driven Greedy Caching Algorithm). The GDGCA tries to design an optimal simulation model, which based on the thoughts of throughput balance and satisfaction degree (SSD), then compares with the regular distributed scheduling algorithm in related research fields, such as the QoE indexes and satisfaction degree under different Poisson data volumes and cycles, the final simulation results prove that GDGCA has better performance in cache scheduling of ICN edge router, especially with the aid of Information Gene value.