Visible to the public Biblio

Found 149 results

Filters: Keyword is optimisation  [Clear All Filters]
2021-03-29
Roy, S., Dey, D., Saha, M., Chatterjee, K., Banerjee, S..  2020.  Implementation of Fuzzy Logic Control in Predictive Analysis and Real Time Monitoring of Optimum Crop Cultivation : Fuzzy Logic Control In Optimum Crop Cultivation. 2020 10th International Conference on Cloud Computing, Data Science Engineering (Confluence). :6—11.

In this article, the writers suggested a scheme for analyzing the optimum crop cultivation based on Fuzzy Logic Network (Implementation of Fuzzy Logic Control in Predictive Analysis and Real Time Monitoring of Optimum Crop Cultivation) knowledge. The Fuzzy system is Fuzzy Logic's set. By using the soil, temperature, sunshine, precipitation and altitude value, the scheme can calculate the output of a certain crop. By using this scheme, the writers hope farmers can boost f arm output. This, thus will have an enormous effect on alleviating economical deficiency, strengthening rate of employment, the improvement of human resources and food security.

2021-03-15
Khalid, W., Yu, H..  2020.  Residual Energy Analysis with Physical-Layer Security for Energy-Constrained UAV Cognitive Radio Systems. 2020 International Conference on Electronics, Information, and Communication (ICEIC). :1–3.
Unmanned aerial vehicles (UAVs) based cognitive radio (CR) systems improve the sensing performance. However, such systems demand secure communication with lower power consumption. Motivated by these observations, we consider an energy-constraint yet energy harvesting (EH) drone flying periodically in the circular track around primary transmitter in the presence of an eavesdropper with an aim to use the licensed band opportunistically. Considering the trade-off between the residual energy and secondary link performance, we formulate the constrained optimization problem, i.e., maximizing residual energy under the constraint of secondary secrecy outage. Simulation results verify the proposed theoretical analysis.
2021-03-09
Le, T. V., Huan, T. T..  2020.  Computational Intelligence Towards Trusted Cloudlet Based Fog Computing. 2020 5th International Conference on Green Technology and Sustainable Development (GTSD). :141—147.

The current trend of IoT user is toward the use of services and data externally due to voluminous processing, which demands resourceful machines. Instead of relying on the cloud of poor connectivity or a limited bandwidth, the IoT user prefers to use a cloudlet-based fog computing. However, the choice of cloudlet is solely dependent on its trust and reliability. In practice, even though a cloudlet possesses a required trusted platform module (TPM), we argue that the presence of a TPM is not enough to make the cloudlet trustworthy as the TPM supports only the primitive security of the bootstrap. Besides uncertainty in security, other uncertain conditions of the network (e.g. network bandwidth, latency and expectation time to complete a service request for cloud-based services) may also prevail for the cloudlets. Therefore, in order to evaluate the trust value of multiple cloudlets under uncertainty, this paper broadly proposes the empirical process for evaluation of trust. This will be followed by a measure of trust-based reputation of cloudlets through computational intelligence such as fuzzy logic and ant colony optimization (ACO). In the process, fuzzy logic-based inference and membership evaluation of trust are presented. In addition, ACO and its pheromone communication across different colonies are being modeled with multiple cloudlets. Finally, a measure of affinity or popular trust and reputation of the cloudlets is also proposed. Together with the context of application under multiple cloudlets, the computationally intelligent approaches have been investigated in terms of performance. Hence the contribution is subjected towards building a trusted cloudlet-based fog platform.

Rahmati, A., Moosavi-Dezfooli, S.-M., Frossard, P., Dai, H..  2020.  GeoDA: A Geometric Framework for Black-Box Adversarial Attacks. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :8443–8452.
Adversarial examples are known as carefully perturbed images fooling image classifiers. We propose a geometric framework to generate adversarial examples in one of the most challenging black-box settings where the adversary can only generate a small number of queries, each of them returning the top-1 label of the classifier. Our framework is based on the observation that the decision boundary of deep networks usually has a small mean curvature in the vicinity of data samples. We propose an effective iterative algorithm to generate query-efficient black-box perturbations with small p norms which is confirmed via experimental evaluations on state-of-the-art natural image classifiers. Moreover, for p=2, we theoretically show that our algorithm actually converges to the minimal perturbation when the curvature of the decision boundary is bounded. We also obtain the optimal distribution of the queries over the iterations of the algorithm. Finally, experimental results confirm that our principled black-box attack algorithm performs better than state-of-the-art algorithms as it generates smaller perturbations with a reduced number of queries.
2021-03-01
Dubey, R., Louis, S. J., Sengupta, S..  2020.  Evolving Dynamically Reconfiguring UAV-hosted Mesh Networks. 2020 IEEE Congress on Evolutionary Computation (CEC). :1–8.
We use potential fields tuned by genetic algorithms to dynamically reconFigure unmanned aerial vehicles networks to serve user bandwidth needs. Such flying network base stations have applications in the many domains needing quick temporary networked communications capabilities such as search and rescue in remote areas and security and defense in overwatch and scouting. Starting with an initial deployment that covers an area and discovers how users are distributed across this area of interest, tuned potential fields specify subsequent movement. A genetic algorithm tunes potential field parameters to reposition UAVs to create and maintain a mesh network that maximizes user bandwidth coverage and network lifetime. Results show that our evolutionary adaptive network deployment algorithm outperforms the current state of the art by better repositioning the unmanned aerial vehicles to provide longer coverage lifetimes while serving bandwidth requirements. The parameters found by the genetic algorithm on four training scenarios with different user distributions lead to better performance than achieved by the state of the art. Furthermore, these parameters also lead to superior performance in three never before seen scenarios indicating that our algorithm finds parameter values that generalize to new scenarios with different user distributions.
2021-02-16
Wei, D., Wei, N., Yang, L., Kong, Z..  2020.  SDN-based multi-controller optimization deployment strategy for satellite network. 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :467—473.
Due to the network topology high dynamic changes, the number of ground users and the impact of uneven traffic, the load difference between SDN-based satellite network controllers varies widely, which will cause network performance such as network delay and throughput to drop dramatically. Aiming at the above problems, a multi-controller optimized deployment strategy of satellite network based on SDN was proposed. First, the controller's load state is divided into four types: overload state, high load state, normal state, and idle state; second, when a controller in the network is idle, the switch under its jurisdiction is migrated to the adjacent low load controller and turn off the controller to reduce waste of resources. When the controller is in a high-load state and an overload state, consider both the controller and the switch, and migrate the high-load switch to the adjacent low-load controller. Balance the load between controllers, improve network performance, and improve network performance and network security. Simulation results show that the method has an average throughput improvement of 2.7% and a delay reduction of 3.1% compared with MCDALB and SDCLB methods.
2021-02-03
Liu, H., Zhou, Z., Zhang, M..  2020.  Application of Optimized Bidirectional Generative Adversarial Network in ICS Intrusion Detection. 2020 Chinese Control And Decision Conference (CCDC). :3009—3014.

Aiming at the problem that the traditional intrusion detection method can not effectively deal with the massive and high-dimensional network traffic data of industrial control system (ICS), an ICS intrusion detection strategy based on bidirectional generative adversarial network (BiGAN) is proposed in this paper. In order to improve the applicability of BiGAN model in ICS intrusion detection, the optimal model was obtained through the single variable principle and cross-validation. On this basis, the supervised control and data acquisition (SCADA) standard data set is used for comparative experiments to verify the performance of the optimized model on ICS intrusion detection. The results show that the ICS intrusion detection method based on optimized BiGAN has higher accuracy and shorter detection time than other methods.

2021-02-01
Yeh, M., Tang, S., Bhattad, A., Zou, C., Forsyth, D..  2020.  Improving Style Transfer with Calibrated Metrics. 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). :3149–3157.
Style transfer produces a transferred image which is a rendering of a content image in the manner of a style image. We seek to understand how to improve style transfer.To do so requires quantitative evaluation procedures, but current evaluation is qualitative, mostly involving user studies. We describe a novel quantitative evaluation procedure. Our procedure relies on two statistics: the Effectiveness (E) statistic measures the extent that a given style has been transferred to the target, and the Coherence (C) statistic measures the extent to which the original image's content is preserved. Our statistics are calibrated to human preference: targets with larger values of E and C will reliably be preferred by human subjects in comparisons of style and content, respectively.We use these statistics to investigate relative performance of a number of Neural Style Transfer (NST) methods, revealing a number of intriguing properties. Admissible methods lie on a Pareto frontier (i.e. improving E reduces C, or vice versa). Three methods are admissible: Universal style transfer produces very good C but weak E; modifying the optimization used for Gatys' loss produces a method with strong E and strong C; and a modified cross-layer method has slightly better E at strong cost in C. While the histogram loss improves the E statistics of Gatys' method, it does not make the method admissible. Surprisingly, style weights have relatively little effect in improving EC scores, and most variability in transfer is explained by the style itself (meaning experimenters can be misguided by selecting styles). Our GitHub Link is available1.
Wang, H., Li, Y., Wang, Y., Hu, H., Yang, M.-H..  2020.  Collaborative Distillation for Ultra-Resolution Universal Style Transfer. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :1857–1866.
Universal style transfer methods typically leverage rich representations from deep Convolutional Neural Network (CNN) models (e.g., VGG-19) pre-trained on large collections of images. Despite the effectiveness, its application is heavily constrained by the large model size to handle ultra-resolution images given limited memory. In this work, we present a new knowledge distillation method (named Collaborative Distillation) for encoder-decoder based neural style transfer to reduce the convolutional filters. The main idea is underpinned by a finding that the encoder-decoder pairs construct an exclusive collaborative relationship, which is regarded as a new kind of knowledge for style transfer models. Moreover, to overcome the feature size mismatch when applying collaborative distillation, a linear embedding loss is introduced to drive the student network to learn a linear embedding of the teacher's features. Extensive experiments show the effectiveness of our method when applied to different universal style transfer approaches (WCT and AdaIN), even if the model size is reduced by 15.5 times. Especially, on WCT with the compressed models, we achieve ultra-resolution (over 40 megapixels) universal style transfer on a 12GB GPU for the first time. Further experiments on optimization-based stylization scheme show the generality of our algorithm on different stylization paradigms. Our code and trained models are available at https://github.com/mingsun-tse/collaborative-distillation.
2021-01-25
Hu, W., Zhang, L., Liu, X., Huang, Y., Zhang, M., Xing, L..  2020.  Research on Automatic Generation and Analysis Technology of Network Attack Graph. 2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :133–139.
In view of the problem that the overall security of the network is difficult to evaluate quantitatively, we propose the edge authority attack graph model, which aims to make up for the traditional dependence attack graph to describe the relationship between vulnerability behaviors. This paper proposed a network security metrics based on probability, and proposes a network vulnerability algorithm based on vulnerability exploit probability and attack target asset value. Finally, a network security reinforcement algorithm with network vulnerability index as the optimization target is proposed based on this metric algorithm.
2021-01-22
Xu, H., Jiang, H..  2019.  An Image Encryption Schema Based on Hybrid Optimized Chaotic System. 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE). :784–788.

The purpose of this paper is to improve the safety of chaotic image encryption algorithm. Firstly, to achieve this goal, it put forward two improved chaotic system logistic and henon, which covered an promoted henon chaotic system with better probability density, and an 2-dimension logistic chaotic system with high Lyapunov exponents. Secondly, the chaotic key stream was generated by the new 2D logistic chaotic system and optimized henon mapping, which mixed in dynamic proportions. The conducted sequence has better randomness and higher safety for image cryptosystem. Thirdly, we proposed algorithm takes advantage of the compounded chaotic system Simulation experiment results and security analysis showed that the proposed scheme was more effective and secure. It can resist various typical attacks, has high security, satisfies the requirements of image encryption theoretical.

2021-01-20
Mavroudis, V., Svenda, P..  2020.  JCMathLib: Wrapper Cryptographic Library for Transparent and Certifiable JavaCard Applets. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :89—96.

The JavaCard multi-application platform is now deployed to over twenty billion smartcards, used in various applications ranging from banking payments and authentication tokens to SIM cards and electronic documents. In most of those use cases, access to various cryptographic primitives is required. The standard JavaCard API provides a basic level of access to such functionality (e.g., RSA encryption) but does not expose low-level cryptographic primitives (e.g., elliptic curve operations) and essential data types (e.g., Integers). Developers can access such features only through proprietary, manufacturer-specific APIs. Unfortunately, such APIs significantly reduce the interoperability and certification transparency of the software produced as they require non-disclosure agreements (NDA) that prohibit public sharing of the applet's source code.We introduce JCMathLib, an open library that provides an intermediate layer realizing essential data types and low-level cryptographic primitives from high-level operations. To achieve this, we introduce a series of optimization techniques for resource-constrained platforms that make optimal use of the underlying hardware, while having a small memory footprint. To the best of our knowledge, it is the first generic library for low-level cryptographic operations in JavaCards that does not rely on a proprietary API.Without any disclosure limitations, JCMathLib has the potential to increase transparency by enabling open code sharing, release of research prototypes, and public code audits. Moreover, JCMathLib can help resolve the conflict between strict open-source licenses such as GPL and proprietary APIs available only under an NDA. This is of particular importance due to the introduction of JavaCard API v3.1, which targets specifically IoT devices, where open-source development might be more common than in the relatively closed world of government-issued electronic documents.

2021-01-18
Naik, N., Jenkins, P., Savage, N., Yang, L., Naik, K., Song, J..  2020.  Embedding Fuzzy Rules with YARA Rules for Performance Optimisation of Malware Analysis. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–7.
YARA rules utilises string or pattern matching to perform malware analysis and is one of the most effective methods in use today. However, its effectiveness is dependent on the quality and quantity of YARA rules employed in the analysis. This can be managed through the rule optimisation process, although, this may not necessarily guarantee effective utilisation of YARA rules and its generated findings during its execution phase, as the main focus of YARA rules is in determining whether to trigger a rule or not, for a suspect sample after examining its rule condition. YARA rule conditions are Boolean expressions, mostly focused on the binary outcome of the malware analysis, which may limit the optimised use of YARA rules and its findings despite generating significant information during the execution phase. Therefore, this paper proposes embedding fuzzy rules with YARA rules to optimise its performance during the execution phase. Fuzzy rules can manage imprecise and incomplete data and encompass a broad range of conditions, which may not be possible in Boolean logic. This embedding may be more advantageous when the YARA rules become more complex, resulting in multiple complex conditions, which may not be processed efficiently utilising Boolean expressions alone, thus compromising effective decision-making. This proposed embedded approach is applied on a collected malware corpus and is tested against the standard and enhanced YARA rules to demonstrate its success.
2021-01-11
Majhi, D., Rao, M., Sahoo, S., Dash, S. P., Mohapatra, D. P..  2020.  Modified Grey Wolf Optimization(GWO) based Accident Deterrence in Internet of Things (IoT) enabled Mining Industry. 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA). :1–4.
The occurrences of accidents in mining industries owing to the fragile health conditions of mine workers are reportedly increasing. Health conditions measured as heart rate or pulse, glycemic index, and blood pressure are often crucial parameters that lead to failure in proper reasoning when not within acceptable ranges. These parameters, such as heartbeat rate can be measured continuously using sensors. The data can be monitored remotely and, when found to be of concern, can send necessary alarms to the mine manager. The early alarm notification enables the mine manager with better preparedness for managing the reach of first aid to the accident spot and thereby reduce mine fatalities drastically. This paper presents a framework for deterring accidents in mines with the help of the Grey Wolf Optimization approach.
2020-12-21
Tseng, S.-Y., Hsiao, C.-C., Wu, R.-B..  2020.  Synthesis and Realization of Chebyshev Filters Based on Constant Electromechanical Coupling Coefficient Acoustic Wave Resonators. 2020 IEEE/MTT-S International Microwave Symposium (IMS). :257–260.
This paper proposes a method to synthesis acoustic wave (AW) filters with Chebyshev response automatically. Meanwhile, each AW resonator used to design the filter can be easily fabricated on the same piezoelectric substrate. The method is based on an optimization algorithm with constraints for constant electromechanical coupling coefficient ( kt2) to minimize the defined cost function. Finally, the experimental result for a surface acoustic wave (SAW) filter of global positioning system (GPS) frequency band based on the 42° lithium tantalate (LiTaO3) substrate validates the simulation results. The designed filter shows insertion loss (IL) and return loss (RL) better than 2.5dB and 18dB respectively in the pass-band, and out-band reflection larger than 30dB.
2020-12-17
Wehbe, R., Williams, R. K..  2019.  Approximate Probabilistic Security for Networked Multi-Robot Systems. 2019 International Conference on Robotics and Automation (ICRA). :1997—2003.

In this paper, we formulate a combinatorial optimization problem that aims to maximize the accuracy of a lower bound estimate of the probability of security of a multi-robot system (MRS), while minimizing the computational complexity involved in its calculation. Security of an MRS is defined using the well-known control theoretic notion of left invertiblility, and the probability of security of an MRS can be calculated using binary decision diagrams (BDDs). The complexity of a BDD depends on the number of disjoint path sets considered during its construction. Taking into account all possible disjoint paths results in an exact probability of security, however, selecting an optimal subset of disjoint paths leads to a good estimate of the probability while significantly reducing computation. To deal with the dynamic nature of MRSs, we introduce two methods: (1) multi-point optimization, a technique that requires some a priori knowledge of the topology of the MRS over time, and (2) online optimization, a technique that does not require a priori knowledge, but must construct BDDs while the MRS is operating. Finally, our approach is validated on an MRS performing a rendezvous objective while exchanging information according to a noisy state agreement process.

2020-12-15
Prajapati, S. A., Deb, S., Gupta, M. K..  2020.  On Some Universally Good Fractional Repetition Codes. 2020 International Conference on COMmunication Systems NETworkS (COMSNETS). :404—411.
Data storage in Distributed Storage Systems (DSS) is a multidimensional optimization problem. Using network coding, one wants to provide reliability, scalability, security, reduced storage overhead, reduced bandwidth for repair and minimal disk I/O in such systems. Advances in the construction of optimal Fractional Repetition (FR) codes, a smart replication of encoded packets on n nodes which also provides optimized disk I/O and where a node failure can be repaired by contacting some specific set of nodes in the system, is in high demand. An attempt towards the construction of universally good FR codes using three different approaches is addressed in this work. In this paper, we present that the code constructed using the partial regular graph for heterogeneous DSS, where the number of packets on each node is different, is universally good. Further, we also encounter the list of parameters for which the ring construction and the T-construction results in universally good codes. In addition, we evaluate the FR code constructions meeting the minimum distance bound.
2020-12-11
Han, Y., Zhang, W., Wei, J., Liu, X., Ye, S..  2019.  The Study and Application of Security Control Plan Incorporating Frequency Stability (SCPIFS) in CPS-Featured Interconnected Asynchronous Grids. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). :349—354.

The CPS-featured modern asynchronous grids interconnected with HVDC tie-lines facing the hazards from bulk power imbalance shock. With the aid of cyber layer, the SCPIFS incorporates the frequency stability constrains is put forwarded. When there is bulk power imbalance caused by HVDC tie-lines block incident or unplanned loads increasing, the proposed SCPIFS ensures the safety and frequency stability of both grids at two terminals of the HVDC tie-line, also keeps the grids operate economically. To keep frequency stability, the controllable variables in security control strategy include loads, generators outputs and the power transferred in HVDC tie-lines. McCormick envelope method and ADMM are introduced to solve the proposed SCPIFS optimization model. Case studies of two-area benchmark system verify the safety and economical benefits of the SCPFS. HVDC tie-line transferred power can take the advantage of low cost generator resource of both sides utmost and avoid the load shedding via tuning the power transferred through the operating tie-lines, thus the operation of both connected asynchronous grids is within the limit of frequency stability domain.

2020-12-02
Wang, W., Xuan, S., Yang, W., Chen, Y..  2019.  User Credibility Assessment Based on Trust Propagation in Microblog. 2019 Computing, Communications and IoT Applications (ComComAp). :270—275.

Nowadays, Microblog has become an important online social networking platform, and a large number of users share information through Microblog. Many malicious users have released various false news driven by various interests, which seriously affects the availability of Microblog platform. Therefore, the evaluation of Microblog user credibility has become an important research issue. This paper proposes a microblog user credibility evaluation algorithm based on trust propagation. In view of the high consumption and low precision caused by malicious users' attacking algorithms and manual selection of seed sets by establishing false social relationships, this paper proposes two optimization strategies: pruning algorithm based on social activity and similarity and based on The seed node selection algorithm of clustering. The pruning algorithm can trim off the attack edges established by malicious users and normal users. The seed node selection algorithm can efficiently select the highly available seed node set, and finally use the user social relationship graph to perform the two-way propagation trust scoring, so that the low trusted user has a lower trusted score and thus identifies the malicious user. The related experiments verify the effectiveness of the trustworthiness-based user credibility evaluation algorithm in the evaluation of Microblog user credibility.

Abeysekara, P., Dong, H., Qin, A. K..  2019.  Machine Learning-Driven Trust Prediction for MEC-Based IoT Services. 2019 IEEE International Conference on Web Services (ICWS). :188—192.

We propose a distributed machine-learning architecture to predict trustworthiness of sensor services in Mobile Edge Computing (MEC) based Internet of Things (IoT) services, which aligns well with the goals of MEC and requirements of modern IoT systems. The proposed machine-learning architecture models training a distributed trust prediction model over a topology of MEC-environments as a Network Lasso problem, which allows simultaneous clustering and optimization on large-scale networked-graphs. We then attempt to solve it using Alternate Direction Method of Multipliers (ADMM) in a way that makes it suitable for MEC-based IoT systems. We present analytical and simulation results to show the validity and efficiency of the proposed solution.

Gliksberg, J., Capra, A., Louvet, A., García, P. J., Sohier, D..  2019.  High-Quality Fault-Resiliency in Fat-Tree Networks (Extended Abstract). 2019 IEEE Symposium on High-Performance Interconnects (HOTI). :9—12.
Coupling regular topologies with optimized routing algorithms is key in pushing the performance of interconnection networks of HPC systems. In this paper we present Dmodc, a fast deterministic routing algorithm for Parallel Generalized Fat-Trees (PGFTs) which minimizes congestion risk even under massive topology degradation caused by equipment failure. It applies a modulo-based computation of forwarding tables among switches closer to the destination, using only knowledge of subtrees for pre-modulo division. Dmodc allows complete re-routing of topologies with tens of thousands of nodes in less than a second, which greatly helps centralized fabric management react to faults with high-quality routing tables and no impact to running applications in current and future very large-scale HPC clusters. We compare Dmodc against routing algorithms available in the InfiniBand control software (OpenSM) first for routing execution time to show feasibility at scale, and then for congestion risk under degradation to demonstrate robustness. The latter comparison is done using static analysis of routing tables under random permutation (RP), shift permutation (SP) and all-to-all (A2A) traffic patterns. Results for Dmodc show A2A and RP congestion risks similar under heavy degradation as the most stable algorithms compared, and near-optimal SP congestion risk up to 1% of random degradation.
2020-12-01
Losey, D. P., Sadigh, D..  2019.  Robots that Take Advantage of Human Trust. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). :7001—7008.

Humans often assume that robots are rational. We believe robots take optimal actions given their objective; hence, when we are uncertain about what the robot's objective is, we interpret the robot's actions as optimal with respect to our estimate of its objective. This approach makes sense when robots straightforwardly optimize their objective, and enables humans to learn what the robot is trying to achieve. However, our insight is that-when robots are aware that humans learn by trusting that the robot actions are rational-intelligent robots do not act as the human expects; instead, they take advantage of the human's trust, and exploit this trust to more efficiently optimize their own objective. In this paper, we formally model instances of human-robot interaction (HRI) where the human does not know the robot's objective using a two-player game. We formulate different ways in which the robot can model the uncertain human, and compare solutions of this game when the robot has conservative, optimistic, rational, and trusting human models. In an offline linear-quadratic case study and a real-time user study, we show that trusting human models can naturally lead to communicative robot behavior, which influences end-users and increases their involvement.

2020-11-30
Ray, K., Banerjee, A., Mohalik, S. K..  2019.  Web Service Selection with Correlations: A Feature-Based Abstraction Refinement Approach. 2019 IEEE 12th Conference on Service-Oriented Computing and Applications (SOCA). :33–40.
In this paper, we address the web service selection problem for linear workflows. Given a linear workflow specifying a set of ordered tasks and a set of candidate services providing different features for each task, the selection problem deals with the objective of selecting the most eligible service for each task, given the ordering specified. A number of approaches to solving the selection problem have been proposed in literature. With web services growing at an incredible pace, service selection at the Internet scale has resurfaced as a problem of recent research interest. In this work, we present our approach to the selection problem using an abstraction refinement technique to address the scalability limitations of contemporary approaches. Experiments on web service benchmarks show that our approach can add substantial performance benefits in terms of space when compared to an approach without our optimization.
2020-11-20
Sun, Y., Wang, J., Lu, Z..  2019.  Asynchronous Parallel Surrogate Optimization Algorithm Based on Ensemble Surrogating Model and Stochastic Response Surface Method. :74—84.
{Surrogate model-based optimization algorithm remains as an important solution to expensive black-box function optimization. The introduction of ensemble model enables the algorithm to automatically choose a proper model integration mode and adapt to various parameter spaces when dealing with different problems. However, this also significantly increases the computational burden of the algorithm. On the other hand, utilizing parallel computing resources and improving efficiency of black-box function optimization also require combination with surrogate optimization algorithm in order to design and realize an efficient parallel parameter space sampling mechanism. This paper makes use of parallel computing technology to speed up the weight updating related computation for the ensemble model based on Dempster-Shafer theory, and combines it with stochastic response surface method to develop a novel parallel sampling mechanism for asynchronous parameter optimization. Furthermore, it designs and implements corresponding parallel computing framework and applies the developed algorithm to quantitative trading strategy tuning in financial market. It is verified that the algorithm is both feasible and effective in actual application. The experiment demonstrates that with guarantee of optimizing performance, the parallel optimization algorithm can achieve excellent accelerating effect.
2020-11-17
Abuzainab, N., Saad, W..  2018.  Misinformation Control in the Internet of Battlefield Things: A Multiclass Mean-Field Game. 2018 IEEE Global Communications Conference (GLOBECOM). :1—7.

In this paper, the problem of misinformation propagation is studied for an Internet of Battlefield Things (IoBT) system in which an attacker seeks to inject false information in the IoBT nodes in order to compromise the IoBT operations. In the considered model, each IoBT node seeks to counter the misinformation attack by finding the optimal probability of accepting a given information that minimizes its cost at each time instant. The cost is expressed in terms of the quality of information received as well as the infection cost. The problem is formulated as a mean-field game with multiclass agents which is suitable to model a massive heterogeneous IoBT system. For this game, the mean-field equilibrium is characterized, and an algorithm based on the forward backward sweep method is proposed. Then, the finite IoBT case is considered, and the conditions of convergence of the equilibria in the finite case to the mean-field equilibrium are presented. Numerical results show that the proposed scheme can achieve a two-fold increase in the quality of information (QoI) compared to the baseline when the nodes are always transmitting.