Visible to the public Biblio

Filters: Keyword is convolutional neural network  [Clear All Filters]
2020-12-11
Vasiliu, V., Sörös, G..  2019.  Coherent Rendering of Virtual Smile Previews with Fast Neural Style Transfer. 2019 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). :66—73.

Coherent rendering in augmented reality deals with synthesizing virtual content that seamlessly blends in with the real content. Unfortunately, capturing or modeling every real aspect in the virtual rendering process is often unfeasible or too expensive. We present a post-processing method that improves the look of rendered overlays in a dental virtual try-on application. We combine the original frame and the default rendered frame in an autoencoder neural network in order to obtain a more natural output, inspired by artistic style transfer research. Specifically, we apply the original frame as style on the rendered frame as content, repeating the process with each new pair of frames. Our method requires only a single forward pass, our shallow architecture ensures fast execution, and our internal feedback loop inherently enforces temporal consistency.

Nguyen, A., Choi, S., Kim, W., Lee, S..  2019.  A Simple Way of Multimodal and Arbitrary Style Transfer. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :1752—1756.

We re-define multimodality and introduce a simple approach to multimodal and arbitrary style transfer. Conventionally, style transfer methods are limited to synthesizing a deterministic output based on a single style, and there has been no work that can generate multiple images of various details, or multimodality, given a single style. In this work, we explore a way to achieve multimodal and arbitrary style transfer by injecting noise to a unimodal method. This novel approach does not require any trainable parameters, and can be readily applied to any unimodal style transfer methods with separate style encoding sub-network in literature. Experimental results show that while being able to transfer an image to multiple domains in various ways, the image quality is highly competitive with contemporary models in style transfer.

2020-12-07
Khandelwal, S., Rana, S., Pandey, K., Kaushik, P..  2018.  Analysis of Hyperparameter Tuning in Neural Style Transfer. 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC). :36–41.

Most of the notable artworks of all time are hand drawn by great artists. But, now with the advancement in image processing and huge computation power, very sophisticated synthesised artworks are being produced. Since mid-1990's, computer graphics engineers have come up with algorithms to produce digital paintings, but the results were not visually appealing. Recently, neural networks have been used to do this task and the results seen are like never before. One such algorithm for this purpose is the neural style transfer algorithm, which imparts the pattern from one image to another, producing marvellous pieces of art. This research paper focuses on the roles of various parameters involved in the neural style transfer algorithm. An extensive analysis of how these parameters influence the output, in terms of time, performance and quality of the style transferred image produced is also shown in the paper. A concrete comparison has been drawn on the basis of different time and performance metrics. Finally, optimal values for these discussed parameters have been suggested.

2020-10-19
Peng, Ruxiang, Li, Weishi, Yang, Tao, Huafeng, Kong.  2019.  An Internet of Vehicles Intrusion Detection System Based on a Convolutional Neural Network. 2019 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom). :1595–1599.
With the continuous development of the Internet of Vehicles, vehicles are no longer isolated nodes, but become a node in the car network. The open Internet will introduce traditional security issues into the Internet of Things. In order to ensure the safety of the networked cars, we hope to set up an intrusion detection system (IDS) on the vehicle terminal to detect and intercept network attacks. In our work, we designed an intrusion detection system for the Internet of Vehicles based on a convolutional neural network, which can run in a low-powered embedded vehicle terminal to monitor the data in the car network in real time. Moreover, for the case of packet encryption in some car networks, we have also designed a separate version for intrusion detection by analyzing the packet header. Experiments have shown that our system can guarantee high accuracy detection at low latency for attack traffic.
2020-10-06
Wu, Chengjun, Shan, Weiwei, Xu, Jiaming.  2019.  Dynamic Adaptation of Approximate Bit-width for CNNs based on Quantitative Error Resilience. 2019 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH). :1—6.

As an emerging paradigm for energy-efficiency design, approximate computing can reduce power consumption through simplification of logic circuits. Although calculation errors are caused by approximate computing, their impacts on the final results can be negligible in some error resilient applications, such as Convolutional Neural Networks (CNNs). Therefore, approximate computing has been applied to CNNs to reduce the high demand for computing resources and energy. Compared with the traditional method such as reducing data precision, this paper investigates the effect of approximate computing on the accuracy and power consumption of CNNs. To optimize the approximate computing technology applied to CNNs, we propose a method for quantifying the error resilience of each neuron by theoretical analysis and observe that error resilience varies widely across different neurons. On the basic of quantitative error resilience, dynamic adaptation of approximate bit-width and the corresponding configurable adder are proposed to fully exploit the error resilience of CNNs. Experimental results show that the proposed method further improves the performance of power consumption while maintaining high accuracy. By adopting the optimal approximate bit-width for each layer found by our proposed algorithm, dynamic adaptation of approximate bit-width reduces power consumption by more than 30% and causes less than 1% loss of the accuracy for LeNet-5.

2020-09-14
Yuan, Yaofeng, When, JieChang.  2019.  Adaptively Weighted Channel Feature Network of Mixed Convolution Kernel. 2019 15th International Conference on Computational Intelligence and Security (CIS). :87–91.
In the deep learning tasks, we can design different network models to address different tasks (classification, detection, segmentation). But traditional deep learning networks simply increase the depth and breadth of the network. This leads to a higher complexity of the model. We propose Adaptively Weighted Channel Feature Network of Mixed Convolution Kernel(SKENet). SKENet extract features from different kernels, then mixed those features by elementwise, lastly do sigmoid operator on channel features to get adaptive weightings. We did a simple classification test on the CIFAR10 amd CIFAR100 dataset. The results show that SKENet can achieve a better result in a shorter time. After that, we did an object detection experiment on the VOC dataset. The experimental results show that SKENet is far ahead of the SKNet[20] in terms of speed and accuracy.
2020-09-11
Azakami, Tomoka, Shibata, Chihiro, Uda, Ryuya, Kinoshita, Toshiyuki.  2019.  Creation of Adversarial Examples with Keeping High Visual Performance. 2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT). :52—56.
The accuracy of the image classification by the convolutional neural network is exceeding the ability of human being and contributes to various fields. However, the improvement of the image recognition technology gives a great blow to security system with an image such as CAPTCHA. In particular, since the character string CAPTCHA has already added distortion and noise in order not to be read by the computer, it becomes a problem that the human readability is lowered. Adversarial examples is a technique to produce an image letting an image classification by the machine learning be wrong intentionally. The best feature of this technique is that when human beings compare the original image with the adversarial examples, they cannot understand the difference on appearance. However, Adversarial examples that is created with conventional FGSM cannot completely misclassify strong nonlinear networks like CNN. Osadchy et al. have researched to apply this adversarial examples to CAPTCHA and attempted to let CNN misclassify them. However, they could not let CNN misclassify character images. In this research, we propose a method to apply FGSM to the character string CAPTCHAs and to let CNN misclassified them.
2020-09-04
Khan, Aasher, Rehman, Suriya, Khan, Muhammad U.S, Ali, Mazhar.  2019.  Synonym-based Attack to Confuse Machine Learning Classifiers Using Black-box Setting. 2019 4th International Conference on Emerging Trends in Engineering, Sciences and Technology (ICEEST). :1—7.
Twitter being the most popular content sharing platform is giving rise to automated accounts called “bots”. Majority of the users on Twitter are bots. Various machine learning (ML) algorithms are designed to detect bots avoiding the vulnerability constraints of ML-based models. This paper contributes to exploit vulnerabilities of machine learning (ML) algorithms through black-box attack. An adversarial text sequence misclassifies the results of deep learning (DL) classifiers for bot detection. Literature shows that ML models are vulnerable to attacks. The aim of this paper is to compromise the accuracy of ML-based bot detection algorithms by replacing original words in tweets with their synonyms. Our results show 7.2% decrease in the accuracy for bot tweets, therefore classifying bot tweets as legitimate tweets.
2020-08-17
Yao, Yepeng, Su, Liya, Lu, Zhigang, Liu, Baoxu.  2019.  STDeepGraph: Spatial-Temporal Deep Learning on Communication Graphs for Long-Term Network Attack Detection. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :120–127.
Network communication data are high-dimensional and spatiotemporal, and their information content is often degraded by common traffic analysis methods. For long-term network attack detection based on network flows, it is important to extract a discriminative, high-dimensional intrinsic representation of such flows. This work focuses on a hybrid deep neural network design using a combination of a convolutional neural network (CNN) and long short-term memory (LSTM) with graph similarity measures to learn high-dimensional representations from the network traffic. In particular, examining a set of network flows, we commence by constructing a temporal communication graph and then computing graph kernel matrices. Having obtained the kernel matrices, for each graph, we use the kernel value between graphs and calculate graph characterization vectors by graph signal processing. This vector can be regarded as a kernel-based similarity embedding vector of the graph that integrates structural similarity information and leverages efficient graph kernel using the graph Laplacian matrix. Our approach exploits graph structures as the additional prior information, the graph Laplacian matrix for feature extraction and hybrid deep learning models for long-term information learning on communication graphs. Experiments on two real-world network attack datasets show that our approach can extract more discriminative representations, leading to an improved accuracy in a supervised classification task. The experimental results show that our method increases the overall accuracy by approximately 10%-15%.
2020-08-10
Liao, Runfa, Wen, Hong, Pan, Fei, Song, Huanhuan, Xu, Aidong, Jiang, Yixin.  2019.  A Novel Physical Layer Authentication Method with Convolutional Neural Network. 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :231–235.
This paper investigates the physical layer (PHY-layer) authentication that exploits channel state information (CSI) to enhance multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system security by detecting spoofing attacks in wireless networks. A multi-user authentication system is proposed using convolutional neural networks (CNNs) which also can distinguish spoofers effectively. In addition, the mini batch scheme is used to train the neural networks and accelerate the training speed. Meanwhile, L1 regularization is adopted to prevent over-fitting and improve the authentication accuracy. The convolutional-neural-network-based (CNN-based) approach can authenticate legitimate users and detect attackers by CSIs with higher performances comparing to traditional hypothesis test based methods.
2020-08-03
Al-Emadi, Sara, Al-Ali, Abdulla, Mohammad, Amr, Al-Ali, Abdulaziz.  2019.  Audio Based Drone Detection and Identification using Deep Learning. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :459–464.
In recent years, unmanned aerial vehicles (UAVs) have become increasingly accessible to the public due to their high availability with affordable prices while being equipped with better technology. However, this raises a great concern from both the cyber and physical security perspectives since UAVs can be utilized for malicious activities in order to exploit vulnerabilities by spying on private properties, critical areas or to carry dangerous objects such as explosives which makes them a great threat to the society. Drone identification is considered the first step in a multi-procedural process in securing physical infrastructure against this threat. In this paper, we present drone detection and identification methods using deep learning techniques such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Convolutional Recurrent Neural Network (CRNN). These algorithms will be utilized to exploit the unique acoustic fingerprints of the flying drones in order to detect and identify them. We propose a comparison between the performance of different neural networks based on our dataset which features audio recorded samples of drone activities. The major contribution of our work is to validate the usage of these methodologies of drone detection and identification in real life scenarios and to provide a robust comparison of the performance between different deep neural network algorithms for this application. In addition, we are releasing the dataset of drone audio clips for the research community for further analysis.
2020-06-22
Adesuyi, Tosin A., Kim, Byeong Man.  2019.  Preserving Privacy in Convolutional Neural Network: An ∊-tuple Differential Privacy Approach. 2019 IEEE 2nd International Conference on Knowledge Innovation and Invention (ICKII). :570–573.
Recent breakthrough in neural network has led to the birth of Convolutional neural network (CNN) which has been found to be very efficient especially in the areas of image recognition and classification. This success is traceable to the availability of large datasets and its capability to learn salient and complex data features which subsequently produce a reusable output model (Fθ). The Fθ are often made available (e.g. on cloud as-a-service) for others (client) to train their data or do transfer learning, however, an adversary can perpetrate a model inversion attack on the model Fθ to recover training data, hence compromising the sensitivity of the model buildup data. This is possible because CNN as a variant of deep neural network does memorize most of its training data during learning. Consequently, this has pose a privacy concern especially when a medical or financial data are used as model buildup data. Existing researches that proffers privacy preserving approach however suffer from significant accuracy degradation and this has left privacy preserving model on a theoretical desk. In this paper, we proposed an ϵ-tuple differential privacy approach that is based on neuron impact factor estimation to preserve privacy of CNN model without significant accuracy degradation. We experiment our approach on two large datasets and the result shows no significant accuracy degradation.
2020-06-01
Xenya, Michael Christopher, Kwayie, Crentsil, Quist-Aphesti, Kester.  2019.  Intruder Detection with Alert Using Cloud Based Convolutional Neural Network and Raspberry Pi. 2019 International Conference on Computing, Computational Modelling and Applications (ICCMA). :46–464.
In this paper, an intruder detection system has been built with an implementation of convolutional neural network (CNN) using raspberry pi, Microsoft's Azure and Twilio cloud systems. The CNN algorithm which is stored in the cloud is implemented to basically classify input data as either intruder or user. By using the raspberry pi as the middleware and raspberry pi camera for image acquisition, efficient execution of the learning and classification operations are performed using higher resources that cloud computing offers. The cloud system is also programmed to alert designated users via multimedia messaging services (MMS) when intruders or users are detected. Furthermore, our work has demonstrated that, though convolutional neural network could impose high computing demands on a processor, the input data could be obtained with low-cost modules and middleware which are of low processing power while subjecting the actual learning algorithm execution to the cloud system.
2020-05-18
Lal Senanayaka, Jagath Sri, Van Khang, Huynh, Robbersmyr, Kjell G..  2018.  Multiple Fault Diagnosis of Electric Powertrains Under Variable Speeds Using Convolutional Neural Networks. 2018 XIII International Conference on Electrical Machines (ICEM). :1900–1905.
Electric powertrains are widely used in automotive and renewable energy industries. Reliable diagnosis for defects in the critical components such as bearings, gears and stator windings, is important to prevent failures and enhance the system reliability and power availability. Most of existing fault diagnosis methods are based on specific characteristic frequencies to single faults at constant speed operations. Once multiple faults occur in the system, such a method may not detect the faults effectively and may give false alarms. Furthermore, variable speed operations render a challenge of analysing nonstationary signals. In this work, a deep learning-based fault diagnosis method is proposed to detect common faults in the electric powertrains. The proposed method is based on pattern recognition using convolutional neural network to detect effectively not only single faults at constant speed but also multiple faults in variable speed operations. The effectiveness of the proposed method is validated via an in-house experimental setup.
2020-05-08
Shen, Weiguo, Wang, Wei.  2018.  Node Identification in Wireless Network Based on Convolutional Neural Network. 2018 14th International Conference on Computational Intelligence and Security (CIS). :238—241.
Aiming at the problem of node identification in wireless networks, a method of node identification based on deep learning is proposed, which starts with the tiny features of nodes in radiofrequency layer. Firstly, in order to cut down the computational complexity, Principal Component Analysis is used to reduce the dimension of node sample data. Secondly, a convolution neural network containing two hidden layers is designed to extract local features of the preprocessed data. Stochastic gradient descent method is used to optimize the parameters, and the Softmax Model is used to determine the output label. Finally, the effectiveness of the method is verified by experiments on practical wireless ad-hoc network.
Dionísio, Nuno, Alves, Fernando, Ferreira, Pedro M., Bessani, Alysson.  2019.  Cyberthreat Detection from Twitter using Deep Neural Networks. 2019 International Joint Conference on Neural Networks (IJCNN). :1—8.

To be prepared against cyberattacks, most organizations resort to security information and event management systems to monitor their infrastructures. These systems depend on the timeliness and relevance of the latest updates, patches and threats provided by cyberthreat intelligence feeds. Open source intelligence platforms, namely social media networks such as Twitter, are capable of aggregating a vast amount of cybersecurity-related sources. To process such information streams, we require scalable and efficient tools capable of identifying and summarizing relevant information for specified assets. This paper presents the processing pipeline of a novel tool that uses deep neural networks to process cybersecurity information received from Twitter. A convolutional neural network identifies tweets containing security-related information relevant to assets in an IT infrastructure. Then, a bidirectional long short-term memory network extracts named entities from these tweets to form a security alert or to fill an indicator of compromise. The proposed pipeline achieves an average 94% true positive rate and 91% true negative rate for the classification task and an average F1-score of 92% for the named entity recognition task, across three case study infrastructures.

Wu, Peilun, Guo, Hui.  2019.  LuNet: A Deep Neural Network for Network Intrusion Detection. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). :617—624.

Network attack is a significant security issue for modern society. From small mobile devices to large cloud platforms, almost all computing products, used in our daily life, are networked and potentially under the threat of network intrusion. With the fast-growing network users, network intrusions become more and more frequent, volatile and advanced. Being able to capture intrusions in time for such a large scale network is critical and very challenging. To this end, the machine learning (or AI) based network intrusion detection (NID), due to its intelligent capability, has drawn increasing attention in recent years. Compared to the traditional signature-based approaches, the AI-based solutions are more capable of detecting variants of advanced network attacks. However, the high detection rate achieved by the existing designs is usually accompanied by a high rate of false alarms, which may significantly discount the overall effectiveness of the intrusion detection system. In this paper, we consider the existence of spatial and temporal features in the network traffic data and propose a hierarchical CNN+RNN neural network, LuNet. In LuNet, the convolutional neural network (CNN) and the recurrent neural network (RNN) learn input traffic data in sync with a gradually increasing granularity such that both spatial and temporal features of the data can be effectively extracted. Our experiments on two network traffic datasets show that compared to the state-of-the-art network intrusion detection techniques, LuNet not only offers a high level of detection capability but also has a much low rate of false positive-alarm.

2020-04-13
Shahbaz, Ajmal, Hoang, Van-Thanh, Jo, Kang-Hyun.  2019.  Convolutional Neural Network based Foreground Segmentation for Video Surveillance Systems. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. 1:86–89.
Convolutional Neural Networks (CNN) have shown astonishing results in the field of computer vision. This paper proposes a foreground segmentation algorithm based on CNN to tackle the practical challenges in the video surveillance system such as illumination changes, dynamic backgrounds, camouflage, and static foreground object, etc. The network is trained using the input of image sequences with respective ground-truth. The algorithm employs a CNN called VGG-16 to extract features from the input. The extracted feature maps are upsampled using a bilinear interpolation. The upsampled feature mask is passed through a sigmoid function and threshold to get the foreground mask. Binary cross entropy is used as the error function to compare the constructed foreground mask with the ground truth. The proposed algorithm was tested on two standard datasets and showed superior performance as compared to the top-ranked foreground segmentation methods.
Wang, Shaoyang, Lv, Tiejun, Zhang, Xuewei.  2019.  Multi-Agent Reinforcement Learning-Based User Pairing in Multi-Carrier NOMA Systems. 2019 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
This paper investigates the problem of user pairing in multi-carrier non-orthogonal multiple access (MC-NOMA) systems. Firstly, the hard channel capacity and soft channel capacity are presented. The former depicts the transmission capability of the system that depends on the channel conditions, and the latter refers to the effective throughput of the system that is determined by the actual user demands. Then, two optimization problems to maximize the hard and soft channel capacities are established, respectively. Inspired by the multiagent deep reinforcement learning (MADRL) and convolutional neural network, the user paring network (UP-Net), based on the cooperative game and deep deterministic policy gradient, is designed for solving the optimization problems. Simulation results demonstrate that the performance of the designed UP-Net is comparable to that obtained from the exhaustive search method via the end-to-end low complexity method, which is superior to the common method, and corroborate that the UP-Net focuses more on the actual user demands to improve the soft channel capacity. Additionally and more importantly, the paper makes a useful exploration on the use of MADRL to solve the resource allocation problems in communication systems. Meanwhile, the design method has strong universality and can be easily extended to other issues.
2020-03-16
Yang, Huan, Cheng, Liang, Chuah, Mooi Choo.  2019.  Deep-Learning-Based Network Intrusion Detection for SCADA Systems. 2019 IEEE Conference on Communications and Network Security (CNS). :1–7.

Supervisory Control and Data Acquisition (SCADA)networks are widely deployed in modern industrial control systems (ICSs)such as energy-delivery systems. As an increasing number of field devices and computing nodes get interconnected, network-based cyber attacks have become major cyber threats to ICS network infrastructure. Field devices and computing nodes in ICSs are subjected to both conventional network attacks and specialized attacks purposely crafted for SCADA network protocols. In this paper, we propose a deep-learning-based network intrusion detection system for SCADA networks to protect ICSs from both conventional and SCADA specific network-based attacks. Instead of relying on hand-crafted features for individual network packets or flows, our proposed approach employs a convolutional neural network (CNN)to characterize salient temporal patterns of SCADA traffic and identify time windows where network attacks are present. In addition, we design a re-training scheme to handle previously unseen network attack instances, enabling SCADA system operators to extend our neural network models with site-specific network attack traces. Our results using realistic SCADA traffic data sets show that the proposed deep-learning-based approach is well-suited for network intrusion detection in SCADA systems, achieving high detection accuracy and providing the capability to handle newly emerged threats.

2020-02-10
Palacio, David N., McCrystal, Daniel, Moran, Kevin, Bernal-Cárdenas, Carlos, Poshyvanyk, Denys, Shenefiel, Chris.  2019.  Learning to Identify Security-Related Issues Using Convolutional Neural Networks. 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME). :140–144.
Software security is becoming a high priority for both large companies and start-ups alike due to the increasing potential for harm that vulnerabilities and breaches carry with them. However, attaining robust security assurance while delivering features requires a precarious balancing act in the context of agile development practices. One path forward to help aid development teams in securing their software products is through the design and development of security-focused automation. Ergo, we present a novel approach, called SecureReqNet, for automatically identifying whether issues in software issue tracking systems describe security-related content. Our approach consists of a two-phase neural net architecture that operates purely on the natural language descriptions of issues. The first phase of our approach learns high dimensional word embeddings from hundreds of thousands of vulnerability descriptions listed in the CVE database and issue descriptions extracted from open source projects. The second phase then utilizes the semantic ontology represented by these embeddings to train a convolutional neural network capable of predicting whether a given issue is security-related. We evaluated SecureReqNet by applying it to identify security-related issues from a dataset of thousands of issues mined from popular projects on GitLab and GitHub. In addition, we also applied our approach to identify security-related requirements from a commercial software project developed by a major telecommunication company. Our preliminary results are encouraging, with SecureReqNet achieving an accuracy of 96% on open source issues and 71.6% on industrial requirements.
Niu, Xiangyu, Li, Jiangnan, Sun, Jinyuan, Tomsovic, Kevin.  2019.  Dynamic Detection of False Data Injection Attack in Smart Grid using Deep Learning. 2019 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–6.
Modern advances in sensor, computing, and communication technologies enable various smart grid applications. The heavy dependence on communication technology has highlighted the vulnerability of the electricity grid to false data injection (FDI) attacks that can bypass bad data detection mechanisms. Existing mitigation in the power system either focus on redundant measurements or protect a set of basic measurements. These methods make specific assumptions about FDI attacks, which are often restrictive and inadequate to deal with modern cyber threats. In the proposed approach, a deep learning based framework is used to detect injected data measurement. Our time-series anomaly detector adopts a Convolutional Neural Network (CNN) and a Long Short Term Memory (LSTM) network. To effectively estimate system variables, our approach observes both data measurements and network level features to jointly learn system states. The proposed system is tested on IEEE 39-bus system. Experimental analysis shows that the deep learning algorithm can identify anomalies which cannot be detected by traditional state estimation bad data detection.
Zubov, Ilya G., Lysenko, Nikolai V., Labkov, Gleb M..  2019.  Detection of the Information Hidden in Image by Convolutional Neural Networks. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :393–394.

This article shows the possibility of detection of the hidden information in images. This is the approach to steganalysis than the basic data about the image and the information about the hiding method of the information are unknown. The architecture of the convolutional neural network makes it possible to detect small changes in the image with high probability.

2019-12-30
Amato, Giuseppe, Carrara, Fabio, Falchi, Fabrizio, Gennaro, Claudio, Vairo, Claudio.  2018.  Facial-based Intrusion Detection System with Deep Learning in Embedded Devices. Proceedings of the 2018 International Conference on Sensors, Signal and Image Processing. :64–68.
With the advent of deep learning based methods, facial recognition algorithms have become more effective and efficient. However, these algorithms have usually the disadvantage of requiring the use of dedicated hardware devices, such as graphical processing units (GPUs), which pose restrictions on their usage on embedded devices with limited computational power. In this paper, we present an approach that allows building an intrusion detection system, based on face recognition, running on embedded devices. It relies on deep learning techniques and does not exploit the GPUs. Face recognition is performed using a knn classifier on features extracted from a 50-layers Residual Network (ResNet-50) trained on the VGGFace2 dataset. In our experiment, we determined the optimal confidence threshold that allows distinguishing legitimate users from intruders. In order to validate the proposed system, we created a ground truth composed of 15,393 images of faces and 44 identities, captured by two smart cameras placed in two different offices, in a test period of six months. We show that the obtained results are good both from the efficiency and effectiveness perspective.
Taha, Bilal, Hatzinakos, Dimitrios.  2019.  Emotion Recognition from 2D Facial Expressions. 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE). :1–4.
This work proposes an approach to find and learn informative representations from 2 dimensional gray-level images for facial expression recognition application. The learned features are obtained from a designed convolutional neural network (CNN). The developed CNN enables us to learn features from the images in a highly efficient manner by cascading different layers together. The developed model is computationally efficient since it does not consist of a huge number of layers and at the same time it takes into consideration the overfitting problem. The outcomes from the developed CNN are compared to handcrafted features that span texture and shape features. The experiments conducted on the Bosphours database show that the developed CNN model outperforms the handcrafted features when coupled with a Support Vector Machines (SVM) classifier.