Biblio
Recently, federated learning (FL), as an advanced and practical solution, has been applied to deal with privacy-preserving issues in distributed multi-party federated modeling. However, most existing FL methods focus on the same privacy-preserving budget while ignoring various privacy requirements of participants. In this paper, we for the first time propose an algorithm (PLU-FedOA) to optimize the deep neural network of horizontal FL with personalized local differential privacy. For such considerations, we design two approaches: PLU, which allows clients to upload local updates under differential privacy-preserving of personally selected privacy level, and FedOA, which helps the server aggregates local parameters with optimized weight in mixed privacy-preserving scenarios. Moreover, we theoretically analyze the effect on privacy and optimization of our approaches. Finally, we verify PLU-FedOA on real-world datasets.
The article deals with the development and implementation of a method for synthesizing structures of threats and risks to information security based on a fuzzy approach. We consider a method for modeling threat structures based on structural abstractions: aggregation, generalization, and Association. It is shown that the considered forms of structural abstractions allow implementing the processes of Ascending and Descending inheritance. characteristics of the threats. A database of fuzzy rules based on procedural abstractions has been developed and implemented in the fuzzy logic tool environment Fussy Logic.
We present ctrlTCP, a method to combine the congestion controls of multiple TCP connections. In contrast to the previous methods such as the Congestion Manager, ctrlTCP can couple all TCP flows that leave one sender, traverse a common bottleneck (e.g., a home user's thin uplink) and arrive at different destinations. Using ns-2 simulations and an implementation in the FreeBSD kernel, we show that our mechanism reduces queuing delay, packet loss, and short flow completion times while enabling precise allocation of the share of the available bandwidth between the connections according to the needs of the applications.
Communication between two Internet hosts using parallel connections may result in unwanted interference between the connections. In this dissertation, we propose a sender-side solution to address this problem by letting the congestion controllers of the different connections collaborate, correctly taking congestion control logic into account. Real-life experiments and simulations show that our solution works for a wide variety of congestion control mechanisms, provides great flexibility when allocating application traffic to the connections, and results in lower queuing delay and less packet loss.
Two-phase I/O is a well-known strategy for implementing collective MPI-IO functions. It redistributes I/O requests among the calling processes into a form that minimizes the file access costs. As modern parallel computers continue to grow into the exascale era, the communication cost of such request redistribution can quickly overwhelm collective I/O performance. This effect has been observed from parallel jobs that run on multiple compute nodes with a high count of MPI processes on each node. To reduce the communication cost, we present a new design for collective I/O by adding an extra communication layer that performs request aggregation among processes within the same compute nodes. This approach can significantly reduce inter-node communication contention when redistributing the I/O requests. We evaluate the performance and compare it with the original two-phase I/O on Cray XC40 parallel computers (Theta and Cori) with Intel KNL and Haswell processors. Using I/O patterns from two large-scale production applications and an I/O benchmark, we show our proposed method effectively reduces the communication cost and hence maintains the scalability for a large number of processes.
A key question for characterising a system's vulnerability against timing attacks is whether or not it allows an adversary to aggregate information about a secret over multiple timing measurements. Existing approaches for reasoning about this aggregate information rely on strong assumptions about the capabilities of the adversary in terms of measurement and computation, which is why they fall short in modelling, explaining, or synthesising real-world attacks against cryptosystems such as RSA or AES. In this paper we present a novel model for reasoning about information aggregation in timing attacks. The model is based on a novel abstraction of timing measurements that better captures the capabilities of real-world adversaries, and a notion of compositionality of programs that explains attacks by divide-and-conquer. Our model thus lifts important limiting assumptions made in prior work and enables us to give the first uniform explanation of high-profile timing attacks in the language of information-flow analysis.
Vehicle ad-hoc network (VANET) is the main driving force to alleviate traffic congestion and accelerate the construction of intelligent transportation. However, the rapid growth of the number of vehicles makes the construction of the safety system of the vehicle network facing multiple tests. This paper proposes an identity-based aggregate signature scheme to protect the privacy of vehicle identity, receive messages in time and authenticate quickly in VANET. The scheme uses aggregate signature algorithm to aggregate the signatures of multiple users into one signature, and joins the idea of batch authentication to complete the authentication of multiple vehicular units, thereby improving the verification efficiency. In addition, the pseudoidentity of vehicles is used to achieve the purpose of vehicle anonymity and privacy protection. Finally, the secure storage of message signatures is effectively realized by using reliable cloud storage technology. Compared with similar schemes, this paper improves authentication efficiency while ensuring security, and has lower storage overhead.