Iqbal, Farkhund, Motyliński, Michał, MacDermott, Áine.
2021.
Discord Server Forensics: Analysis and Extraction of Digital Evidence. 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1—8.
In recent years we can observe that digital forensics is being applied to a variety of domains as nearly any data can become valuable forensic evidence. The sheer scope of web-based investigations provides a vast amount of information. Due to a rapid increase in the number of cybercrimes the importance of application-specific forensics is greater than ever. Criminals use the application not only to communicate but also to facilitate crimes. It came to our attention that the gaming chat application Discord is one of them. Discord allows its users to send text messages as well as exchange image, video, and audio files. While Discord's community is not as large as that of the most popular messaging apps the stable growth of its userbase and recent incidents indicate that it is used by criminals. This paper presents our research into the digital forensic analysis of Discord client-side artefacts and presents experimental development of a tool for extraction, analysis, and presentation of the data from Discord application. The work then proposes a solution in form of a tool, `DiscFor', that can retrieve information from the application's local files and cache storage.
Li, Xigao, Azad, Babak Amin, Rahmati, Amir, Nikiforakis, Nick.
2021.
Good Bot, Bad Bot: Characterizing Automated Browsing Activity. 2021 IEEE Symposium on Security and Privacy (SP). :1589—1605.
As the web keeps increasing in size, the number of vulnerable and poorly-managed websites increases commensurately. Attackers rely on armies of malicious bots to discover these vulnerable websites, compromising their servers, and exfiltrating sensitive user data. It is, therefore, crucial for the security of the web to understand the population and behavior of malicious bots.In this paper, we report on the design, implementation, and results of Aristaeus, a system for deploying large numbers of "honeysites", i.e., websites that exist for the sole purpose of attracting and recording bot traffic. Through a seven-month-long experiment with 100 dedicated honeysites, Aristaeus recorded 26.4 million requests sent by more than 287K unique IP addresses, with 76,396 of them belonging to clearly malicious bots. By analyzing the type of requests and payloads that these bots send, we discover that the average honeysite received more than 37K requests each month, with more than 50% of these requests attempting to brute-force credentials, fingerprint the deployed web applications, and exploit large numbers of different vulnerabilities. By comparing the declared identity of these bots with their TLS handshakes and HTTP headers, we uncover that more than 86.2% of bots are claiming to be Mozilla Firefox and Google Chrome, yet are built on simple HTTP libraries and command-line tools.
Haney, Oliver, ElAarag, Hala.
2021.
Secure Suite: An Open-Source Service for Internet Security. SoutheastCon 2021. :1—7.
Internet security is constantly at risk as a result of the fast developing and highly sophisticated exploitation methods. These attacks use numerous media to take advantage of the most vulnerable of Internet users. Phishing, spam calling, unsecure content and other means of intrusion threaten Internet users every day. In order to maintain the security and privacy of sensitive user data, the user must pay for services that include the storage and generation of secure passwords, monitoring internet traffic to discourage navigation to malicious websites, among other services. Some people do not have the money to purchase privacy protection services and others find convoluted euphemisms baked into privacy policies quite confusing. In response to this problem, we developed an Internet security software package, Secure Suite, which we provide as open source and hence free of charge. Users can easily deploy and manage Secure Suite. It is composed of a password manager, a malicious URL detection service, dubbed MalURLNet, a URL extender, data visualization tools, a browser extension to interact with the web app, and utility tools to maintain data integrity. MalURLNet is one of the main components of Secure Suite. It utilizes deep learning and other open-source software to mitigate security threats by identifying malicious URLs. We exhaustively tested our proposed MalURLNet service. Our studies show that MalURLNet outperforms four other well-known URL classifiers in terms of accuracy, loss, precision, recall, and F1-Score.
Kumaladewi, Nia, Larasati, Inggrit, Jahar, Asep Saepudin, Hasan, Hamka, Zamhari, Arif, Azizy, Jauhar.
2021.
Analysis of User Satisfaction on Website Quality of the Ministry of Agriculture, Directorate General of Food Crops. 2021 9th International Conference on Cyber and IT Service Management (CITSM). :1—7.
A good website quality is needed to meet user satisfaction. The value of the benefits of the web will be felt by many users if the web has very good quality. The ease of accessing the website is a reflection of the good quality of the website. The positive image of the web owner can be seen from the quality of the website. When doing research on the website of the Ministry of Agriculture, Directorate General of Food Crops, the researcher found several pages that did not meet the website category which were said to be of good quality. Based on these findings, the authors are interested in analyzing user satisfaction with the website to measure the quality of the website of the Ministry of Agriculture, Directorate General of Food Crops using the PIECES method (Performance, Information, Economy, Control/Security, Efficiency, Service). The results of the study indicate that the level of user satisfaction with the website has been indicated as SATISFIED on each indicator, however, in measuring the quality of the website using YSlow (the GTMetrix tools, Pingdom Website Speed Tools), and (Web of Trust) WOT found many deficiencies such as loading the website takes a long time, there are some pages that cannot be found (page not found) and so on. Therefore, the authors provide several recommendations for better website development.
Pasias, Achilleas, Kotsiopoulos, Thanasis, Lazaridis, Georgios, Drosou, Anastasios, Tzovaras, Dimitrios, Sarigiannidis, Panagiotis.
2021.
Enabling Cyber-attack Mitigation Techniques in a Software Defined Network. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :497–502.
Software Defined Networking (SDN) is an innovative technology, which can be applied in a plethora of applications and areas. Recently, SDN has been identified as one of the most promising solutions for industrial applications as well. The key features of SDN include the decoupling of the control plane from the data plane and the programmability of the network through application development. Researchers are looking at these features in order to enhance the Quality of Service (QoS) provisioning of modern network applications. To this end, the following work presents the development of an SDN application, capable of mitigating attacks and maximizing the network’s QoS, by implementing mixed integer linear programming but also using genetic algorithms. Furthermore, a low-cost, physical SDN testbed was developed in order to evaluate the aforementioned application in a more realistic environment other than only using simulation tools.
Lacava, Andrea, Giacomini, Emanuele, D'Alterio, Francesco, Cuomo, Francesca.
2021.
Intrusion Detection System for Bluetooth Mesh Networks: Data Gathering and Experimental Evaluations. 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). :661–666.
Bluetooth Low Energy mesh networks are emerging as new standard of short burst communications. While security of the messages is guaranteed thought standard encryption techniques, little has been done in terms of actively protecting the overall network in case of attacks aiming to undermine its integrity. Although many network analysis and risk mitigation techniques are currently available, they require considerable amounts of data coming from both legitimate and attack scenarios to sufficiently discriminate among them, which often turns into the requirement of a complete description of the traffic flowing through the network. Furthermore, there are no publicly available datasets to this extent for BLE mesh networks, due most to the novelty of the standard and to the absence of specific implementation tools. To create a reliable mechanism of network analysis suited for BLE in this paper we propose a machine learning Intrusion Detection System (IDS) based on pattern classification and recognition of the most classical denial of service attacks affecting this kind of networks, working on a single internal node, thus requiring a small amount of information to operate. Moreover, in order to overcome the gap created by the absence of data, we present our data collection system based on ESP32 that allowed the collection of the packets from the Network and the Model layers of the BLE Mesh stack, together with a set of experiments conducted to get the necessary data to train the IDS. In the last part, we describe some preliminary results obtained by the experimental setups, focusing on its strengths, as well as on the aspects where further analysis is required, hence proposing some improvements of the classification model as future work. Index Terms-Bluetooth, BLE Mesh, Intrusion Detection System, IoT, network security.