Visible to the public Biblio

Found 599 results

Filters: Keyword is Tools  [Clear All Filters]
2022-04-19
Frolova, Daria, Kogos, Konstsntin, Epishkina, Anna.  2021.  Traffic Normalization for Covert Channel Protecting. 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). :2330–2333.
Nowadays a huge amount of sensitive information is sending via packet data networks and its security doesn't provided properly. Very often information leakage causes huge damage to organizations. One of the mechanisms to cause information leakage when it transmits through a communication channel is to construct a covert channel. Everywhere used packet networks provide huge opportunities for covert channels creating, which often leads to leakage of critical data. Moreover, covert channels based on packet length modifying can function in a system even if traffic encryption is applied and there are some data transfer schemes that are difficult to detect. The purpose of the paper is to construct and examine a normalization protection tool against covert channels. We analyze full and partial normalization, propose estimation of the residual covert channel capacity in a case of counteracting and determine the best parameters of counteraction tool.
Zukran, Busra, Siraj, Maheyzah Md.  2021.  Performance Comparison on SQL Injection and XSS Detection using Open Source Vulnerability Scanners. 2021 International Conference on Data Science and Its Applications (ICoDSA). :61–65.

Web technologies are typically built with time constraints and security vulnerabilities. Automatic software vulnerability scanners are common tools for detecting such vulnerabilities among software developers. It helps to illustrate the program for the attacker by creating a great deal of engagement within the program. SQL Injection and Cross-Site Scripting (XSS) are two of the most commonly spread and dangerous vulnerabilities in web apps that cause to the user. It is very important to trust the findings of the site vulnerability scanning software. Without a clear idea of the accuracy and the coverage of the open-source tools, it is difficult to analyze the result from the automatic vulnerability scanner that provides. The important to do a comparison on the key figure on the automated vulnerability scanners because there are many kinds of a scanner on the market and this comparison can be useful to decide which scanner has better performance in term of SQL Injection and Cross-Site Scripting (XSS) vulnerabilities. In this paper, a method by Jose Fonseca et al, is used to compare open-source automated vulnerability scanners based on detection coverage and a method by Yuki Makino and Vitaly Klyuev for precision rate. The criteria vulnerabilities will be injected into the web applications which then be scanned by the scanners. The results then are compared by analyzing the precision rate and detection coverage of vulnerability detection. Two leading open source automated vulnerability scanners will be evaluated. In this paper, the scanner that being utilizes is OW ASP ZAP and Skipfish for comparison. The results show that from precision rate and detection rate scope, OW ASP ZAP has better performance than Skipfish by two times for precision rate and have almost the same result for detection coverage where OW ASP ZAP has a higher number in high vulnerabilities.

Wang, Xiaomeng, Wang, Jiajie, Guan, Zhibin, Xin, Wei, Cui, Jing.  2021.  Mining String Feature for Malicious Binary Detection Based on Normalized CNN. 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS). :748–752.
Most famous malware defense tools depend on a large number of detect rules, which are time consuming to develop and require lots of professional experience. Meanwhile, even commercial tools may show high false-negative for some new coming malware, whose patterns were not curved in the prepared rules. This paper proposed the Normalized CNN based Malicious binary Detection method on condition of String, Feature mining (NCMDSF) to address the above problems. Firstly, amount of string feature was extracted from thousands of windows binary applications. Secondly, a 3-layer normalized CNN model, with normalization layer other than down sampling layer, was fit to detect malware. Finally, the proposed method NCMDSF was evaluated to discover malware from more than 1,000 windows binary applications by K-fold cross validation. Experimental results showed that, NCMDSF was superior to some other learning-based methods, including classical CNN, LSTM, normalized LSTM, and won higher true positive rate on the condition of same false positive rate. Furthermore, it successfully avoids over-fitting that occurs in deep learning methods without using normalization.
2022-04-18
Rafaiani, Giulia, Battaglioni, Massimo, Baldi, Marco, Chiaraluce, Franco, Libertini, Giovanni, Spalazzi, Luca, Cancellieri, Giovanni.  2021.  A Functional Approach to Cyber Risk Assessment. 2021 AEIT International Annual Conference (AEIT). :1–6.
Information security has become a crucial issue not only from the technical standpoint, but also from the managerial standpoint. The necessity for organizations to understand and manage cyber risk has led to the rise of a plethora of risk assessment methods and tools. These approaches are often difficult to interpret and complex to manage for organizations. In this paper, we propose a simple and quantitative method for the estimation of the likelihood of occurrence of a cyber incident. Our approach uses a generalized logistic function and a cumulative geometric distribution to combine the maturity and the complexity of the technical infrastructure of an organization with its attractiveness towards cyber criminals.
Miller, Lo\"ıc, Mérindol, Pascal, Gallais, Antoine, Pelsser, Cristel.  2021.  Verification of Cloud Security Policies. 2021 IEEE 22nd International Conference on High Performance Switching and Routing (HPSR). :1–5.

Companies like Netflix increasingly use the cloud to deploy their business processes. Those processes often involve partnerships with other companies, and can be modeled as workflows where the owner of the data at risk interacts with contractors to realize a sequence of tasks on the data to be secured.In practice, access control is an essential building block to deploy these secured workflows. This component is generally managed by administrators using high-level policies meant to represent the requirements and restrictions put on the workflow. Handling access control with a high-level scheme comes with the benefit of separating the problem of specification, i.e. defining the desired behavior of the system, from the problem of implementation, i.e. enforcing this desired behavior. However, translating such high-level policies into a deployed implementation can be error-prone.Even though semi-automatic and automatic tools have been proposed to assist this translation, policy verification remains highly challenging in practice. In this paper, our aim is to define and propose structures assisting the checking and correction of potential errors introduced on the ground due to a faulty translation or corrupted deployments. In particular, we investigate structures with formal foundations able to naturally model policies. Metagraphs, a generalized graph theoretic structure, fulfill those requirements: their usage enables to compare high-level policies to their implementation. In practice, we consider Rego, a language used by companies like Netflix and Plex for their release process, as a valuable representative of most common policy languages. We propose a suite of tools transforming and checking policies as metagraphs, and use them in a global framework to show how policy verification can be achieved with such structures. Finally, we evaluate the performance of our verification method.

2022-04-13
Mishra, Anupama, Gupta, B. B., Peraković, Dragan, Peñalvo, Francisco José García, Hsu, Ching-Hsien.  2021.  Classification Based Machine Learning for Detection of DDoS attack in Cloud Computing. 2021 IEEE International Conference on Consumer Electronics (ICCE). :1—4.
Distributed Denial of service attack(DDoS)is a network security attack and now the attackers intruded into almost every technology such as cloud computing, IoT, and edge computing to make themselves stronger. As per the behaviour of DDoS, all the available resources like memory, cpu or may be the entire network are consumed by the attacker in order to shutdown the victim`s machine or server. Though, the plenty of defensive mechanism are proposed, but they are not efficient as the attackers get themselves trained by the newly available automated attacking tools. Therefore, we proposed a classification based machine learning approach for detection of DDoS attack in cloud computing. With the help of three classification machine learning algorithms K Nearest Neighbor, Random Forest and Naive Bayes, the mechanism can detect a DDoS attack with the accuracy of 99.76%.
Silva, Wagner, Garcia, Ana Cristina Bicharra.  2021.  Where is our data? A Blockchain-based Information Chain of Custody Model for Privacy Improvement 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD). :329–334.
The advancement of Information and Communication Technologies has brought numerous facilities and benefits to society. In this environment, surrounded by technologies, data, and personal information, have become an essential and coveted tool for many sectors. In this scenario, where a large amount of data has been collected, stored, and shared, privacy concerns arise, especially when dealing with sensitive data such as health data. The information owner generally has no control over his information, which can bring serious consequences such as increases in health insurance prices or put the individual in an uncomfortable situation with disclosing his physical or mental health. While privacy regulations, like the General Data Protection Regulation (GDPR), make it clear that the information owner must have full control and management over their data, disparities have been observed in most systems and platforms. Therefore, they are often not able to give consent or have control and management over their data. For the users to exercise their right to privacy and have sufficient control over their data, they must know everything that happens to them, where their data is, and where they have been. It is necessary that the entire life cycle, from generation to deletion of data, is managed by its owner. To this end, this article presents an Information Chain of Custody Model based on Blockchain technology, which allows from the traceability of information to the offer of tools that will enable the effective management of data, offering total control to its owner. The result showed that the prototype was very useful in the traceability of the information. With that it became clear the technical feasibility of this research.
Ahmad Riduan, Nuraqilah Haidah, Feresa Mohd Foozy, Cik, Hamid, Isredza Rahmi A, Shamala, Palaniappan, Othman, Nur Fadzilah.  2021.  Data Wiping Tool: ByteEditor Technique. 2021 3rd International Cyber Resilience Conference (CRC). :1–6.
This Wiping Tool is an anti-forensic tool that is built to wipe data permanently from laptop's storage. This tool is capable to ensure the data from being recovered with any recovery tools. The objective of building this wiping tool is to maintain the confidentiality and integrity of the data from unauthorized access. People tend to delete the file in normal way, however, the file face the risk of being recovered. Hence, the integrity and confidentiality of the deleted file cannot be protected. Through wiping tools, the files are overwritten with random strings to make the files no longer readable. Thus, the integrity and the confidentiality of the file can be protected. Regarding wiping tools, nowadays, lots of wiping tools face issue such as data breach because the wiping tools are unable to delete the data permanently from the devices. This situation might affect their main function and a threat to their users. Hence, a new wiping tool is developed to overcome the problem. A new wiping tool named Data Wiping tool is applying two wiping techniques. The first technique is Randomized Data while the next one is enhancing wiping technique, known as ByteEditor. ByteEditor is a combination of two different techniques, byte editing and byte deletion. With the implementation of Object-Oriented methodology, this wiping tool is built. This methodology consists of analyzing, designing, implementation and testing. The tool is analyzed and compared with other wiping tools before the designing of the tool start. Once the designing is done, implementation phase take place. The code of the tool is created using Visual Studio 2010 with C\# language and being tested their functionality to ensure the developed tool meet the objectives of the project. This tool is believed able to contribute to the development of wiping tools and able to solve problems related to other wiping tools.
2022-04-12
Redini, Nilo, Continella, Andrea, Das, Dipanjan, De Pasquale, Giulio, Spahn, Noah, Machiry, Aravind, Bianchi, Antonio, Kruegel, Christopher, Vigna, Giovanni.  2021.  Diane: Identifying Fuzzing Triggers in Apps to Generate Under-constrained Inputs for IoT Devices. 2021 IEEE Symposium on Security and Privacy (SP). :484—500.
Internet of Things (IoT) devices have rooted themselves in the everyday life of billions of people. Thus, researchers have applied automated bug finding techniques to improve their overall security. However, due to the difficulties in extracting and emulating custom firmware, black-box fuzzing is often the only viable analysis option. Unfortunately, this solution mostly produces invalid inputs, which are quickly discarded by the targeted IoT device and do not penetrate its code. Another proposed approach is to leverage the companion app (i.e., the mobile app typically used to control an IoT device) to generate well-structured fuzzing inputs. Unfortunately, the existing solutions produce fuzzing inputs that are constrained by app-side validation code, thus significantly limiting the range of discovered vulnerabilities.In this paper, we propose a novel approach that overcomes these limitations. Our key observation is that there exist functions inside the companion app that can be used to generate optimal (i.e., valid yet under-constrained) fuzzing inputs. Such functions, which we call fuzzing triggers, are executed before any data-transforming functions (e.g., network serialization), but after the input validation code. Consequently, they generate inputs that are not constrained by app-side sanitization code, and, at the same time, are not discarded by the analyzed IoT device due to their invalid format. We design and develop Diane, a tool that combines static and dynamic analysis to find fuzzing triggers in Android companion apps, and then uses them to fuzz IoT devices automatically. We use Diane to analyze 11 popular IoT devices, and identify 11 bugs, 9 of which are zero days. Our results also show that without using fuzzing triggers, it is not possible to generate bug-triggering inputs for many devices.
2022-04-01
Mekruksavanich, Sakorn, Jitpattanakul, Anuchit, Thongkum, Patcharapan.  2021.  Metrics-based Knowledge Analysis in Software Design for Web-based Application Security Protection. 2021 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering. :281—284.
During this period of high-speed internet, there are a number of serious challenges for software security protection of software design, especially throughout the life cycle of the process of software design, in which there are various risks involving information interaction. Significant information leakage can result from a lack of technical support and software security protection. One major problem with regard to creating software that includes security is the way that secure software is defined and the methods that are used for the measurement of security. The point of this research work is on the software engineers' perspective regarding security in the stage of software design. The tools for the measurement of the metrics are employed for the evaluation of the software's security. In this case study, a metric category of design are used, which are assumed to provide quantitative data about the software's security.
Pereira, José D'Abruzzo, Campos, João R., Vieira, Marco.  2021.  Machine Learning to Combine Static Analysis Alerts with Software Metrics to Detect Security Vulnerabilities: An Empirical Study. 2021 17th European Dependable Computing Conference (EDCC). :1—8.

Software developers can use diverse techniques and tools to reduce the number of vulnerabilities, but the effectiveness of existing solutions in real projects is questionable. For example, Static Analysis Tools (SATs) report potential vulnerabilities by analyzing code patterns, and Software Metrics (SMs) can be used to predict vulnerabilities based on high-level characteristics of the code. In theory, both approaches can be applied from the early stages of the development process, but it is well known that they fail to detect critical vulnerabilities and raise a large number of false alarms. This paper studies the hypothesis of using Machine Learning (ML) to combine alerts from SATs with SMs to predict vulnerabilities in a large software project (under development for many years). In practice, we use four ML algorithms, alerts from two SATs, and a large number of SMs to predict whether a source code file is vulnerable or not (binary classification) and to predict the vulnerability category (multiclass classification). Results show that one can achieve either high precision or high recall, but not both at the same time. To understand the reason, we analyze and compare snippets of source code, demonstrating that vulnerable and non-vulnerable files share similar characteristics, making it hard to distinguish vulnerable from non-vulnerable code based on SAT alerts and SMs.

Sedano, Wadlkur Kurniawan, Salman, Muhammad.  2021.  Auditing Linux Operating System with Center for Internet Security (CIS) Standard. 2021 International Conference on Information Technology (ICIT). :466—471.
Linux is one of the operating systems to support the increasingly rapid development of internet technology. Apart from the speed of the process, security also needs to be considered. Center for Internet Security (CIS) Benchmark is an example of a security standard. This study implements the CIS Benchmark using the Chef Inspec application. This research focuses on building a tool to perform security audits on the Ubuntu 20.04 operating system. 232 controls on CIS Benchmark were successfully implemented using Chef Inspec application. The results of this study were 87 controls succeeded, 118 controls failed, and 27 controls were skipped. This research is expected to be a reference for information system managers in managing system security.
Khurat, Assadarat, Sangkhachantharanan, Phirawat.  2021.  An Automatic Networking Device Auditing Tool Based on CIS Benchmark. 2021 18th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). :409—412.
Security has become an important issue in an IT system of an organization. Each IT component has to be configured correctly, otherwise the risk of attack could increase. An important component is networking device such as router and switch. To avoid this misconfiguration, a well-known process called audit is used. There are several auditing tools both commercial and open-source. However, none of the existing tools that are open-source can automatically audit the security settings of networking device based on standard e.g., CIS benchmark. We, thus propose a tool that can verify the networking device automatically based on best practices so that auditors can conveniently check as well as issue a report.
Markina, Maria S., Markin, Pavel V., Voevodin, Vladislav A., Burenok, Dmitry S..  2021.  Methodology for Quantifying the Materiality of Audit Evidence Using Expert Assessments and Their Ranking. 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). :2390—2393.
An Information security audit is a process of obtaining objective audit evidence and evaluating it objectively for compliance with audit criteria. Given resource constraints, it's advisable to focus on obtaining evidence that has a significant impact on its effectiveness when developing an audit program to organize the audit. The person managing the audit program faces an urgent task developing an audit program, taking into account the information content of extracted evidence and resource constraints. In practice, evidence cannot be evaluated correctly directly in numerical scales, so they are forced to use less informative scales. The purpose of scientific research is to develop a methodology for assessing the materiality of audit evidence using expert assessments, their statistical processing, and transition to quantitative scales. As a result, the person managing the audit program gets a tool for developing an effective audit program.
2022-03-23
Shah, Priyanka, Kasbe, Tanmay.  2021.  Detecting Sybil Attack, Black Hole Attack and DoS Attack in VANET Using RSA Algorithm. 2021 Emerging Trends in Industry 4.0 (ETI 4.0). :1—7.
In present scenario features like low-cost, power-efficientand easy-to-implement Wireless Sensor Networks (WSN’s) has become one of growing prospects.though, its security issues have become a popular topic of research nowadays. Specific attacks often experience the security issues as they easily combined with other attacks to destroy the network. In this paper, we discuss about detecting the particular attacks like Sybil, Black-holeand Denial of Service (DoS) attacks on WSNs. These networks are more vulnerable to them. We attempt to investigate the security measures and the applicability of the AODV protocol to detect and manage specific types of network attacks in VANET.The RSA algorithm is proposed here, as it is capable of detecting sensor nodes ormessages transmitted from sensor nodes to the base station and prevents network from being attacked by the source node. It also improves the security mechanism of the AODV protocol. This simulation set up is performed using MATLAB simulation tool
Matellán, Vicente, Rodríguez-Lera, Francisco-J., Guerrero-Higueras, Ángel-M., Rico, Francisco-Martín, Ginés, Jonatan.  2021.  The Role of Cybersecurity and HPC in the Explainability of Autonomous Robots Behavior. 2021 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO). :1–5.
Autonomous robots are increasingly widespread in our society. These robots need to be safe, reliable, respectful of privacy, not manipulable by external agents, and capable of offering explanations of their behavior in order to be accountable and acceptable in our societies. Companies offering robotic services will need to provide mechanisms to address these issues using High Performance Computing (HPC) facilities, where logs and off-line forensic analysis could be addressed if required, but these solutions are still not available in software development frameworks for robots. The aim of this paper is to discuss the implications and interactions among cybersecurity, safety, and explainability with the goal of making autonomous robots more trustworthy.
2022-03-22
Castro, Angel, Perez-Pons, Alexander.  2021.  Virtual Assistant for Forensics Recovery of IoT Devices. 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :186—190.
The rapid expansion and diversity of technology throughout society have impacted the growing knowledge gap in conducting analysis on IoT devices. The IoT digital forensic field lacks the necessary tools and guidance to perform digital forensics on these devices. This is mainly attributed to their level of complexity and heterogeneity that is abundant within IoT devices-making the use of a JTAG technique one of the only ways to acquire information stored on an IoT device effectively. Nonetheless, utilizing a JTAG technique can be challenging, especially when having multiple devices with each possibly having its own configuration. To alleviate these issues within the field, we propose the development of an Internet of Things - Forensics Recovery Assistant (IoT-FRA). The IoT-FRA will offer the capabilities of an expert system to assist inexperienced users in performing forensics recovery of IoT devices through a JTAG technique and analysis on the device's capabilities to develop an organized method that will prioritize IoT devices to be analyzed.
2022-03-15
Rawal, Bharat S., Gollapudi, Sai Tarun.  2021.  No-Sum IPsec Lite: Simplified and lightweight Internet security protocol for IoT devices. 2021 8th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :4—9.
IPsec is widely used for internet security because it offers confidentiality, integrity, and authenticity also protects from replay attacks. IP Security depends on numerous frameworks, organization propels, and cryptographic techniques. IPsec is a heavyweight complex security protocol suite. Because of complex architecture and implementation processes, security implementers prefer TLS. Because of complex implementation, it is impractical to manage over the IoT devices. We propose a simplified and lite version of internet security protocol implemented with only ESP. For encryption, we use AES, RAS-RLP public key cryptography.
Amir, Guy, Schapira, Michael, Katz, Guy.  2021.  Towards Scalable Verification of Deep Reinforcement Learning. 2021 Formal Methods in Computer Aided Design (FMCAD). :193—203.
Deep neural networks (DNNs) have gained significant popularity in recent years, becoming the state of the art in a variety of domains. In particular, deep reinforcement learning (DRL) has recently been employed to train DNNs that realize control policies for various types of real-world systems. In this work, we present the whiRL 2.0 tool, which implements a new approach for verifying complex properties of interest for DRL systems. To demonstrate the benefits of whiRL 2.0, we apply it to case studies from the communication networks domain that have recently been used to motivate formal verification of DRL systems, and which exhibit characteristics that are conducive for scalable verification. We propose techniques for performing k-induction and semi-automated invariant inference on such systems, and leverage these techniques for proving safety and liveness properties that were previously impossible to verify due to the scalability barriers of prior approaches. Furthermore, we show how our proposed techniques provide insights into the inner workings and the generalizability of DRL systems. whiRL 2.0 is publicly available online.
Keshani, Mehdi.  2021.  Scalable Call Graph Constructor for Maven. 2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). :99—101.
As a rich source of data, Call Graphs are used for various applications including security vulnerability detection. Despite multiple studies showing that Call Graphs can drastically improve the accuracy of analysis, existing ecosystem-scale tools like Dependabot do not use Call Graphs and work at the package-level. Using Call Graphs in ecosystem use cases is not practical because of the scalability problems that Call Graph generators have. Call Graph generation is usually considered to be a "full program analysis" resulting in large Call Graphs and expensive computation. To make an analysis applicable to ecosystem scale, this pragmatic approach does not work, because the number of possible combinations of how a particular artifact can be combined in a full program explodes. Therefore, it is necessary to make the analysis incremental. There are existing studies on different types of incremental program analysis. However, none of them focuses on Call Graph generation for an entire ecosystem. In this paper, we propose an incremental implementation of the CHA algorithm that can generate Call Graphs on-demand, by stitching together partial Call Graphs that have been extracted for libraries before. Our preliminary evaluation results show that the proposed approach scales well and outperforms the most scalable existing framework called OPAL.
Haowei, Liang, Chunyan, Hou, Jinsong, Wang, Chen, Chen.  2021.  Software Safety Verification Framework based on Predicate Abstraction. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :1327—1332.
Program verification techniques have gained increasing popularity in academic and industrial circles during the last years. Predicate abstraction is a traditional and practical verification technique, which can solve the problem of state space explosion pretty well. Many software verification tools have implemented it. But these implementations are not user-friendly, or scalable. Aimed at these problems, we describe and implement a new automatic predicate abstraction framework, CChecker, for proving the safety of procedural programs with integer assignments. CChecker is a whole system composed of two parts: front and back end. The front end preprocesses and parses the source programs into logic models based on Clang. And the back end resolves the models based on Z3 to get software safety property. At last, the experiments show the potential of CChecker.
Baluta, Teodora, Chua, Zheng Leong, Meel, Kuldeep S., Saxena, Prateek.  2021.  Scalable Quantitative Verification for Deep Neural Networks. 2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). :248—249.
Despite the functional success of deep neural networks (DNNs), their trustworthiness remains a crucial open challenge. To address this challenge, both testing and verification techniques have been proposed. But these existing techniques pro- vide either scalability to large networks or formal guarantees, not both. In this paper, we propose a scalable quantitative verification framework for deep neural networks, i.e., a test-driven approach that comes with formal guarantees that a desired probabilistic property is satisfied. Our technique performs enough tests until soundness of a formal probabilistic property can be proven. It can be used to certify properties of both deterministic and randomized DNNs. We implement our approach in a tool called PROVERO1 and apply it in the context of certifying adversarial robustness of DNNs. In this context, we first show a new attack- agnostic measure of robustness which offers an alternative to purely attack-based methodology of evaluating robustness being reported today. Second, PROVERO provides certificates of robustness for large DNNs, where existing state-of-the-art verification tools fail to produce conclusive results. Our work paves the way forward for verifying properties of distributions captured by real-world deep neural networks, with provable guarantees, even where testers only have black-box access to the neural network.
2022-03-14
Farooq, Muhammad Usman, Rashid, Muhammad, Azam, Farooque, Rasheed, Yawar, Anwar, Muhammad Waseem, Shahid, Zohaib.  2021.  A Model-Driven Framework for the Prevention of DoS Attacks in Software Defined Networking (SDN). 2021 IEEE International Systems Conference (SysCon). :1–7.
Security is a key component of the network. Software Defined Networking (SDN) is a refined form of traditional network management system. It is a new encouraging approach to design-build and manage networks. SDN decouples control plane (software-based router) and data plane (software-based switch), hence it is programmable. Consequently, it facilitates implementation of security based applications for the prevention of DOS attacks. Various solutions have been proposed by researches for handling of DOS attacks in SDN. However, these solutions are very limited in scope, complex, time consuming and change resistant. In this article, we have proposed a novel model driven framework i.e. MDAP (Model Based DOS Attacks Prevention) Framework. Particularly, a meta model is proposed. As tool support, a tree editor and a Sirius based graphical modeling tool with drag drop palette have been developed in Oboe designer community edition. The tool support allows modeling and visualization of simple and complex network topology scenarios. A Model to Text transformation engine has also been made part of framework that generates java code for the Floodlight SDN controller from the modeled scenario. The validity of proposed framework has been demonstrated via case study. The results prove that the proposed framework can effectively handle DOS attacks in SDN with simplicity as per the true essence of MDSE and can be reliably used for the automation of security based applications in order to deny DOS attacks in SDN.
Nassar, Mohamed, Khoury, Joseph, Erradi, Abdelkarim, Bou-Harb, Elias.  2021.  Game Theoretical Model for Cybersecurity Risk Assessment of Industrial Control Systems. 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1—7.
Supervisory Control and Data Acquisition (SCADA) and Distributed Control Systems (DCS) use advanced computing, sensors, control systems, and communication networks to monitor and control industrial processes and distributed assets. The increased connectivity of these systems to corporate networks has exposed them to new security threats and made them a prime target for cyber-attacks with the potential of causing catastrophic economic, social, and environmental damage. Recent intensified sophisticated attacks on these systems have stressed the importance of methodologies and tools to assess the security risks of Industrial Control Systems (ICS). In this paper, we propose a novel game theory model and Monte Carlo simulations to assess the cybersecurity risks of an exemplary industrial control system under realistic assumptions. We present five game enrollments where attacker and defender agents make different preferences and we analyze the final outcome of the game. Results show that a balanced defense with uniform budget spending is the best strategy against a look-ahead attacker.
Staniloiu, Eduard, Nitu, Razvan, Becerescu, Cristian, Rughiniş, Razvan.  2021.  Automatic Integration of D Code With the Linux Kernel. 2021 20th RoEduNet Conference: Networking in Education and Research (RoEduNet). :1—6.
The Linux kernel is implemented in C, an unsafe programming language, which puts the burden of memory management, type and bounds checking, and error handling in the hands of the developer. Hundreds of buffer overflow bugs have compromised Linux systems over the years, leading to endless layers of mitigations applied on top of C. In contrast, the D programming language offers automated memory safety checks and modern features such as OOP, templates and functional style constructs. In addition, interoper-ability with C is supported out of the box. However, to integrate a D module with the Linux kernel it is required that the needed C header files are translated to D header files. This is a tedious, time consuming, manual task. Although a tool to automate this process exists, called DPP, it does not work with the complicated, sometimes convoluted, kernel code. In this paper, we improve DPP with the ability to translate any Linux kernel C header to D. Our work enables the development and integration of D code inside the Linux kernel, thus facilitating a method of making the kernel memory safe.