R, Sowmiya, G, Sivakamasundari, V, Archana.
2022.
Facial Emotion Recognition using Deep Learning Approach. 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS). :1064—1069.
Human facial emotion recognition pays a variety of applications in society. The basic idea of Facial Emotion Recognition is to map the different facial emotions to a variety of emotional states. Conventional Facial Emotion Recognition consists of two processes: extracting the features and feature selection. Nowadays, in deep learning algorithms, Convolutional Neural Networks are primarily used in Facial Emotion Recognition because of their hidden feature extraction from the images. Usually, the standard Convolutional Neural Network has simple learning algorithms with finite feature extraction layers for extracting information. The drawback of the earlier approach was that they validated only the frontal view of the photos even though the image was obtained from different angles. This research work uses a deep Convolutional Neural Network along with a DenseNet-169 as a backbone network for recognizing facial emotions. The emotion Recognition dataset was used to recognize the emotions with an accuracy of 96%.
Giri, Sarwesh, Singh, Gurchetan, Kumar, Babul, Singh, Mehakpreet, Vashisht, Deepanker, Sharma, Sonu, Jain, Prince.
2022.
Emotion Detection with Facial Feature Recognition Using CNN & OpenCV. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :230—232.
Emotion Detection through Facial feature recognition is an active domain of research in the field of human-computer interaction (HCI). Humans are able to share multiple emotions and feelings through their facial gestures and body language. In this project, in order to detect the live emotions from the human facial gesture, we will be using an algorithm that allows the computer to automatically detect the facial recognition of human emotions with the help of Convolution Neural Network (CNN) and OpenCV. Ultimately, Emotion Detection is an integration of obtained information from multiple patterns. If computers will be able to understand more of human emotions, then it will mutually reduce the gap between humans and computers. In this research paper, we will demonstrate an effective way to detect emotions like neutral, happy, sad, surprise, angry, fear, and disgust from the frontal facial expression of the human in front of the live webcam.
Lee, Gwo-Chuan, Li, Zi-Yang, Li, Tsai-Wei.
2022.
Ensemble Algorithm of Convolution Neural Networks for Enhancing Facial Expression Recognition. 2022 IEEE 5th International Conference on Knowledge Innovation and Invention (ICKII ). :111—115.
Artificial intelligence (AI) cooperates with multiple industries to improve the overall industry framework. Especially, human emotion recognition plays an indispensable role in supporting medical care, psychological counseling, crime prevention and detection, and crime investigation. The research on emotion recognition includes emotion-specific intonation patterns, literal expressions of emotions, and facial expressions. Recently, the deep learning model of facial emotion recognition aims to capture tiny changes in facial muscles to provide greater recognition accuracy. Hybrid models in facial expression recognition have been constantly proposed to improve the performance of deep learning models in these years. In this study, we proposed an ensemble learning algorithm for the accuracy of the facial emotion recognition model with three deep learning models: VGG16, InceptionResNetV2, and EfficientNetB0. To enhance the performance of these benchmark models, we applied transfer learning, fine-tuning, and data augmentation to implement the training and validation of the Facial Expression Recognition 2013 (FER-2013) Dataset. The developed algorithm finds the best-predicted value by prioritizing the InceptionResNetV2. The experimental results show that the proposed ensemble learning algorithm of priorities edges up 2.81% accuracy of the model identification. The future extension of this study ventures into the Internet of Things (IoT), medical care, and crime detection and prevention.
Churaev, Egor, Savchenko, Andrey V..
2022.
Multi-user facial emotion recognition in video based on user-dependent neural network adaptation. 2022 VIII International Conference on Information Technology and Nanotechnology (ITNT). :1—5.
In this paper, the multi-user video-based facial emotion recognition is examined in the presence of a small data set with the emotions of end users. By using the idea of speaker-dependent speech recognition, we propose a novel approach to solve this task if labeled video data from end users is available. During the training stage, a deep convolutional neural network is trained for user-independent emotion classification. Next, this classifier is adapted (fine-tuned) on the emotional video of a concrete person. During the recognition stage, the user is identified based on face recognition techniques, and an emotional model of the recognized user is applied. It is experimentally shown that this approach improves the accuracy of emotion recognition by more than 20% for the RAVDESS dataset.
Shiqi, Li, Yinghui, Han.
2022.
Detection of Bad Data and False Data Injection Based on Back-Propagation Neural Network. 2022 IEEE PES Innovative Smart Grid Technologies - Asia (ISGT Asia). :101—105.
Power system state estimation is an essential tool for monitoring the operating conditions of the grid. However, the collected measurements may not always be reliable due to bad data from various faults as well as the increasing potential of being exposed to cyber-attacks, particularly from data injection attacks. To enhance the accuracy of state estimation, this paper presents a back-propagation neural network to detect and identify bad data and false data injections. A variety of training data exhibiting different statistical properties were used for training. The developed strategy was tested on the IEEE 30-bus and 118-bus power systems using MATLAB. Simulation results revealed the feasibility of the method for the detection and differentiation of bad data and false data injections in various operating scenarios.
Su, Xiangjing, Zhu, Zheng, Xiao, Shiqu, Fu, Yang, Wu, Yi.
2022.
Deep Neural Network Based Efficient Data Fusion Model for False Data Detection in Power System. 2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2). :1462—1466.
Cyberattack on power system brings new challenges on the development of modern power system. Hackers may implement false data injection attack (FDIA) to cause unstable operating conditions of the power system. However, data from different power internet of things usually contains a lot of redundancy, making it difficult for current efficient discriminant model to precisely identify FDIA. To address this problem, we propose a deep learning network-based data fusion model to handle features from measurement data in power system. Proposed model includes a data enrichment module and a data fusion module. We firstly employ feature engineering technique to enrich features from power system operation in time dimension. Subsequently, a long short-term memory based autoencoder (LSTM-AE) is designed to efficiently avoid feature space explosion problem during data enriching process. Extensive experiments are performed on several classical attack detection models over the load data set from IEEE 14-bus system and simulation results demonstrate that fused data from proposed model shows higher detection accuracy with respect to the raw data.
Kiruthiga, G, Saraswathi, P, Rajkumar, S, Suresh, S, Dhiyanesh, B, Radha, R.
2022.
Effective DDoS Attack Detection using Deep Generative Radial Neural Network in the Cloud Environment. 2022 7th International Conference on Communication and Electronics Systems (ICCES). :675—681.
Recently, internet services have increased rapidly due to the Covid-19 epidemic. As a result, cloud computing applications, which serve end-users as subscriptions, are rising. Cloud computing provides various possibilities like cost savings, time and access to online resources via the internet for end-users. But as the number of cloud users increases, so does the potential for attacks. The availability and efficiency of cloud computing resources may be affected by a Distributed Denial of Service (DDoS) attack that could disrupt services' availability and processing power. DDoS attacks pose a serious threat to the integrity and confidentiality of computer networks and systems that remain important assets in the world today. Since there is no effective way to detect DDoS attacks, it is a reliable weapon for cyber attackers. However, the existing methods have limitations, such as relatively low accuracy detection and high false rate performance. To tackle these issues, this paper proposes a Deep Generative Radial Neural Network (DGRNN) with a sigmoid activation function and Mutual Information Gain based Feature Selection (MIGFS) techniques for detecting DDoS attacks for the cloud environment. Specifically, the proposed first pre-processing step uses data preparation using the (Network Security Lab) NSL-KDD dataset. The MIGFS algorithm detects the most efficient relevant features for DDoS attacks from the pre-processed dataset. The features are calculated by trust evaluation for detecting the attack based on relative features. After that, the proposed DGRNN algorithm is utilized for classification to detect DDoS attacks. The sigmoid activation function is to find accurate results for prediction in the cloud environment. So thus, the proposed experiment provides effective classification accuracy, performance, and time complexity.
Schulze, Jan-Philipp, Sperl, Philip, Böttinger, Konstantin.
2022.
Anomaly Detection by Recombining Gated Unsupervised Experts. 2022 International Joint Conference on Neural Networks (IJCNN). :1—8.
Anomaly detection has been considered under several extents of prior knowledge. Unsupervised methods do not require any labelled data, whereas semi-supervised methods leverage some known anomalies. Inspired by mixture-of-experts models and the analysis of the hidden activations of neural networks, we introduce a novel data-driven anomaly detection method called ARGUE. Our method is not only applicable to unsupervised and semi-supervised environments, but also profits from prior knowledge of self-supervised settings. We designed ARGUE as a combination of dedicated expert networks, which specialise on parts of the input data. For its final decision, ARGUE fuses the distributed knowledge across the expert systems using a gated mixture-of-experts architecture. Our evaluation motivates that prior knowledge about the normal data distribution may be as valuable as known anomalies.
Qasaimeh, Ghazi, Al-Gasaymeh, Anwar, Kaddumi, Thair, Kilani, Qais.
2022.
Expert Systems and Neural Networks and their Impact on the Relevance of Financial Information in the Jordanian Commercial Banks. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1—7.
The current study aims to discern the impact of expert systems and neural network on the Jordanian commercial banks. In achieving the objective, the study employed descriptive analytical approach and the population consisted of the 13 Jordanian commercial banks listed at Amman Stock Exchange-ASE. The primary data were obtained by using a questionnaire with 188 samples distributed to a group of accountants, internal auditors, and programmers, who constitute the study sample. The results unveiled that there is an impact of the application of expert systems and neural networks on the relevance of financial information in Jordanian commercial banks. It also revealed that there is a high level of relevance of financial information in Jordanian commercial banks. Accordingly, the study recommended the need for banks to keep pace with the progress and development taking place in connection to the process and environment of expertise systems by providing modern and developed devices to run various programs and expert systems. It also recommended that, Jordanian commercial banks need to rely more on advanced systems to operate neural network technology more efficiently.
Wenqi, Huang, Lingyu, Liang, Xin, Wang, Zhengguo, Ren, Shang, Cao, Xiaotao, Jiang.
2022.
An Early Warning Analysis Model of Metering Equipment Based on Federated Hybrid Expert System. 2022 15th International Symposium on Computational Intelligence and Design (ISCID). :217—220.
The smooth operation of metering equipment is inseparable from the monitoring and analysis of equipment alarm events by automated metering systems. With the generation of big data in power metering and the increasing demand for information security of metering systems in the power industry, how to use big data and protect data security at the same time has become a hot research field. In this paper, we propose a hybrid expert model based on federated learning to deal with the problem of alarm information analysis and identification. The hybrid expert system can divide the metering warning problem into multiple sub-problems for processing, which greatly improves the recognition and prediction accuracy. The experimental results show that our model has high accuracy in judging and identifying equipment faults.