Visible to the public Biblio

Found 431 results

Filters: Keyword is Neural networks  [Clear All Filters]
2022-03-09
Park, Byung H., Chattopadhyay, Somrita, Burgin, John.  2021.  Haze Mitigation in High-Resolution Satellite Imagery Using Enhanced Style-Transfer Neural Network and Normalization Across Multiple GPUs. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. :2827—2830.
Despite recent advances in deep learning approaches, haze mitigation in large satellite images is still a challenging problem. Due to amorphous nature of haze, object detection or image segmentation approaches are not applicable. Also it is practically infeasible to obtain ground truths for training. Bounded memory capacity of GPUs is another constraint that limits the size of image to be processed. In this paper, we propose a style transfer based neural network approach to mitigate haze in a large overhead imagery. The network is trained without paired ground truths; further, perception loss is added to restore vivid colors, enhance contrast and minimize artifacts. The paper also illustrates our use of multiple GPUs in a collective way to produce a single coherent clear image where each GPU dehazes different portions of a large hazy image.
Gong, Peiyong, Zheng, Kai, Jiang, Yi, Liu, Jia.  2021.  Water Surface Object Detection Based on Neural Style Learning Algorithm. 2021 40th Chinese Control Conference (CCC). :8539—8543.
In order to detect the objects on the water surface, a neural style learning algorithm is proposed in this paper. The algorithm uses the Gram matrix of a pre-trained convolutional neural network to represent the style of the texture in the image, which is originally used for image style transfer. The objects on the water surface can be easily distinguished by the difference in their styles of the image texture. The algorithm is tested on the dataset of the Airbus Ship Detection Challenge on Kaggle. Compared to the other water surface object detection algorithms, the proposed algorithm has a good precision of 0.925 with recall equals to 0.86.
2022-03-08
Markchit, Sarawut.  2021.  K-mean Index Learning for Multimedia Datasets. 2021 13th International Conference on Knowledge and Smart Technology (KST). :6—11.
Currently, one method to deal with the storage and computation of multimedia retrieval applications is an approximate nearest neighbor (ANN) search. Hashing algorithms and Vector quantization (VQ) are widely used in ANN search. So, K-mean clustering is a method of VQ that can solve those problems. With the increasing growth of multimedia data such as text view, image view, video view, audio view, and 3D view. Thus, it is a reason that why multimedia retrieval is very important. We can retrieve the results of each media type by inputting a query of that type. Even though many hashing algorithms and VQ techniques are proposed to produce a compact or short binary codes. In the real-time purposes the exhaustive search is impractical, and Hamming distance computation in the Hamming space suffers inaccurate results. The challenge of this paper is focusing on how to learn multimedia raw data or features representation to search on each media type for multimedia retrieval. So we propose a new search method that utilizes K-mean hash codes by computing the probability of a cluster in the index code. The proposed employs the index code from the K-mean cluster number that is converted to hash code. The inverted index table is constructed basing on the K-mean hash code. Then we can improve the original K-mean index accuracy and efficiency by learning a deep neural network (DNN). We performed the experiments on four benchmark multimedia datasets to retrieve each view such as 3D, image, video, text, and audio, where hash codes are produced by K-mean clustering methods. Our results show the effectiveness boost the performance on the baseline (exhaustive search).
Xiaoqian, Xiong.  2021.  A Sensor Fault Diagnosis Algorithm for UAV Based on Neural Network. 2021 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS). :260–265.
To improve the security and reliability of the system in case of sensor failure, a fault diagnosis algorithm based on neural network is proposed to locate the fault quickly and reconstruct the control system in this paper. Firstly, the typical airborne sensors are introduced and their common failure modes are analyzed. Then, a new method of complex feature extraction using wavelet packet is put forward to extract the fault characteristics of UAV sensors. Finally, the observer method based on BP neural network is adopted to train and acquire data offline, and to detect and process single or multiple sensor faults online. Matlab simulation results show that the algorithm has good diagnostic accuracy and strong generalization ability, which also has certain practicability in engineering.
Diao, Weiping.  2021.  Network Security Situation Forecast Model Based on Neural Network Algorithm Development and Verification. 2021 IEEE 4th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE). :462—465.

With the rapid development of Internet scale and technology, people pay more and more attention to network security. At present, the general method in the field of network security is to use NSS(Network Security Situation) to describe the security situation of the target network. Because NSSA (Network Security Situation Awareness) has not formed a unified optimal solution in architecture design and algorithm design, many ideas have been put forward continuously, and there is still a broad research space. In this paper, the improved LSTM(long short-term memory) neural network is used to analyze and process NSS data, and effectively utilize the attack logic contained in sequence data. Build NSSF (Network Security Situation Forecast) framework based on NAWL-ILSTM. The framework is to directly output the quantified NSS change curve after processing the input original security situation data. Modular design and dual discrimination engine reduce the complexity of implementation and improve the stability. Simulation results show that the prediction model not only improves the convergence speed of the prediction model, but also greatly reduces the prediction error of the model.

Kai, Yun, Qiang, Huang, Yixuan, Ma.  2021.  Construction of Network Security Perception System Using Elman Neural Network. 2021 2nd International Conference on Computer Communication and Network Security (CCNS). :187—190.
The purpose of the study is to improve the security of the network, and make the state of network security predicted in advance. First, the theory of neural networks is studied, and its shortcomings are analyzed by the standard Elman neural network. Second, the layers of the feedback nodes of the Elman neural network are improved according to the problems that need to be solved. Then, a network security perception system based on GA-Elman (Genetic Algorithm-Elman) neural network is proposed to train the network by global search method. Finally, the perception ability is compared and analyzed through the model. The results show that the model can accurately predict network security based on the experimental charts and corresponding evaluation indexes. The comparative experiments show that the GA-Elman neural network security perception system has a better prediction ability. Therefore, the model proposed can be used to predict the state of network security and provide early warnings for network security administrators.
2022-03-01
Meng, Qinglan, Pang, Xiyu, Zheng, Yanli, Jiang, Gangwu, Tian, Xin.  2021.  Development and Optimization of Software Defined Networking Anomaly Detection Architecture by GRU-CNN under Deep Learning. 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). :828–834.
Ensuring the network security, resists the malicious traffic attacks as much as possible, and ensuring the network security, the Gated Recurrent Unit (GRU) and Convolutional Neural Network (CNN) are combined. Then, a Software Defined Networking (SDN) anomaly detection architecture is built and continuously optimized to ensure network security as much as possible and enhance the reliability of the detection architecture. The results show that the proposed network architecture can greatly improve the accuracy of detection, and its performance will be different due to the different number of CNN layers. When the two-layer CNN structure is selected, its performance is the best among all algorithms. Especially, the accuracy of GRU- CNN-2 is 98.7%, which verifies that the proposed method is effective. Therefore, under deep learning, the utilization of GRU- CNN to explore and optimize the SDN anomaly detection is of great significance to ensure information transmission security in the future.
Wang, Xingbin, Zhao, Boyan, HOU, RUI, Awad, Amro, Tian, Zhihong, Meng, Dan.  2021.  NASGuard: A Novel Accelerator Architecture for Robust Neural Architecture Search (NAS) Networks. 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA). :776–789.
Due to the wide deployment of deep learning applications in safety-critical systems, robust and secure execution of deep learning workloads is imperative. Adversarial examples, where the inputs are carefully designed to mislead the machine learning model is among the most challenging attacks to detect and defeat. The most dominant approach for defending against adversarial examples is to systematically create a network architecture that is sufficiently robust. Neural Architecture Search (NAS) has been heavily used as the de facto approach to design robust neural network models, by using the accuracy of detecting adversarial examples as a key metric of the neural network's robustness. While NAS has been proven effective in improving the robustness (and accuracy in general), the NAS-generated network models run noticeably slower on typical DNN accelerators than the hand-crafted networks, mainly because DNN accelerators are not optimized for robust NAS-generated models. In particular, the inherent multi-branch nature of NAS-generated networks causes unacceptable performance and energy overheads.To bridge the gap between the robustness and performance efficiency of deep learning applications, we need to rethink the design of AI accelerators to enable efficient execution of robust (auto-generated) neural networks. In this paper, we propose a novel hardware architecture, NASGuard, which enables efficient inference of robust NAS networks. NASGuard leverages a heuristic multi-branch mapping model to improve the efficiency of the underlying computing resources. Moreover, NASGuard addresses the load imbalance problem between the computation and memory-access tasks from multi-branch parallel computing. Finally, we propose a topology-aware performance prediction model for data prefetching, to fully exploit the temporal and spatial localities of robust NAS-generated architectures. We have implemented NASGuard with Verilog RTL. The evaluation results show that NASGuard achieves an average speedup of 1.74× over the baseline DNN accelerator.
Li, Xiaojian, Chen, Jing, Jiang, Yiyi, Hu, Hangping, Yang, Haopeng.  2021.  An Accountability-Oriented Generation approach to Time-Varying Structure of Cloud Service. 2021 IEEE International Conference on Services Computing (SCC). :413–418.
In the current cloud service development, during the widely used of cloud service, it can self organize and respond on demand when the cloud service in phenomenon of failure or violation, but it may still cause violation. The first step in forecasting or accountability for this situation, is to generate a dynamic structure of cloud services in a timely manner. In this research, it has presented a method to generate the time-varying structure of cloud service. Firstly, dependencies between tasks and even instances within a job of cloud service are visualized to explore the time-varying characteristics contained in the cloud service structure. And then, those dependencies are discovered quantitatively using CNN (Convolutional Neural Networks). Finally, it structured into an event network of cloud service for tracing violation and other usages. A validation to this approach has been examined by an experiment based on Alibaba’s dataset. A function integrity of this approach may up to 0.80, which is higher than Bai Y and others which is no more than 0.60.
Liu, Jinghua, Chen, Pingping, Chen, Feng.  2021.  Performance of Deep Learning for Multiple Antennas Physical Layer Network Coding. 2021 15th International Symposium on Medical Information and Communication Technology (ISMICT). :179–183.
In this paper, we propose a deep learning based detection for multiple input multiple output (MIMO) physical-layer network coding (DeepPNC) over two way relay channels (TWRC). In MIMO-PNC, the relay node receives the signals superimposed from the two end nodes. The relay node aims to obtain the network-coded (NC) form of the two end nodes' signals. By training suitable deep neural networks (DNNs) with a limited set of training samples. DeepPNC can extract the NC symbols from the superimposed signals received while the output of each layer in DNNs converges. Compared with the traditional detection algorithms, DeepPNC has higher mapping accuracy and does not require channel information. The simulation results show that the DNNs based DeepPNC can achieve significant gain over the DeepNC scheme and the other traditional schemes, especially when the channel matrix changes unexpectedly.
Li, Pei, Wang, Longlong.  2021.  Combined Neural Network Based on Deep Learning for AMR. 2021 7th International Conference on Computer and Communications (ICCC). :1244–1248.
Automatic modulation recognition (AMR) plays an important role in cognitive radio and electronic reconnaissance applications. In order to solve the problem that the lack of modulation signal data sets, the labeled data sets are generated by the software radio equipment NI-USRP 2920 and LabVIEW software development tool. In this paper, a combined network based on deep learning is proposed to identify ten types of digital modulation signals. Convolutional neural network (CNN) and Inception network are trained on different data sets, respectively. We combine CNN with Inception network to distinguish different modulation signals well. Experimental results show that our proposed method can recognize ten types of digital modulation signals with high identification accuracy, even in scenarios with a low signal-to-noise ratio (SNR).
Omid Azarkasb, Seyed, Sedighian Kashi, Saeed, Hossein Khasteh, Seyed.  2021.  A Network Intrusion Detection Approach at the Edge of Fog. 2021 26th International Computer Conference, Computer Society of Iran (CSICC). :1–6.
In addition to the feature of real-time analytics, fog computing allows detection nodes to be located at the edges of the network. On the other hand, intrusion detection systems require prompt and accurate attack analysis and detection. These systems must promptly respond appropriately to an event. Increasing the speed of data transfer and response requires less bandwidth in the network, reducing the data sent to the cloud and increasing information security as some of the advantages of using detection nodes at the edges of the network in fog computing. The use of neural networks in the analyzer engine is important for the low consumption of system resources, avoidance of explicit production of detection rules, detection of known deformed attacks, and the ability to manage noise and outlier data. The current paper proposes and implements the architecture of network intrusion detection nodes in fog computing, in addition to presenting the proposed fog network architecture. In the proposed architecture, each node can, in addition to performing intrusion detection operations, observe the nodes around it, find the compromised node or intrusion node, and inform the nodes close to it to disconnect from that node.
Chen, Shuyu, Li, Wei, Liu, Jun, Jin, Haoyu, Yin, Xuehui.  2021.  Network Intrusion Detection Based on Subspace Clustering and BP Neural Network. 2021 8th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :65–70.
This paper proposes a novel network intrusion detection algorithm based on the combination of Subspace Clustering (SSC) and BP neural network. Firstly, we perform a subspace clustering algorithm on the network data set to obtain different subspaces. Secondly, BP neural network intrusion detection is carried out on the data in different subspaces, and calculate the prediction error value. By comparing with the pre-set accuracy, the threshold is constantly updated to improve the ability to identify network attacks. By comparing with K-means, DBSCAN, SSC-EA and k-KNN intrusion detection model, the SSC-BP neural network model can detect the most attacked networks with the lowest false detection rate.
Ding, Shanshuo, Wang, Yingxin, Kou, Liang.  2021.  Network Intrusion Detection Based on BiSRU and CNN. 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS). :145–147.
In recent years, with the continuous development of artificial intelligence algorithms, their applications in network intrusion detection have become more and more widespread. However, as the network speed continues to increase, network traffic increases dramatically, and the drawbacks of traditional machine learning methods such as high false alarm rate and long training time are gradually revealed. CNN(Convolutional Neural Networks) can only extract spatial features of data, which is obviously insufficient for network intrusion detection. In this paper, we propose an intrusion detection model that combines CNN and BiSRU (Bi-directional Simple Recurrent Unit) to achieve the goal of intrusion detection by processing network traffic logs. First, we extract the spatial features of the original data using CNN, after that we use them as input, further extract the temporal features using BiSRU, and finally output the classification results by softmax to achieve the purpose of intrusion detection.
Zhao, Ruijie, Li, Zhaojie, Xue, Zhi, Ohtsuki, Tomoaki, Gui, Guan.  2021.  A Novel Approach Based on Lightweight Deep Neural Network for Network Intrusion Detection. 2021 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
With the ubiquitous network applications and the continuous development of network attack technology, all social circles have paid close attention to the cyberspace security. Intrusion detection systems (IDS) plays a very important role in ensuring computer and communication systems security. Recently, deep learning has achieved a great success in the field of intrusion detection. However, the high computational complexity poses a major hurdle for the practical deployment of DL-based models. In this paper, we propose a novel approach based on a lightweight deep neural network (LNN) for IDS. We design a lightweight unit that can fully extract data features while reducing the computational burden by expanding and compressing feature maps. In addition, we use inverse residual structure and channel shuffle operation to achieve more effective training. Experiment results show that our proposed model for intrusion detection not only reduces the computational cost by 61.99% and the model size by 58.84%, but also achieves satisfactory accuracy and detection rate.
Jingyi, Wu, Xusheng, Gan, Jieli, Huang, Shenghou, Li.  2021.  ELM Network Intrusion Detection Model Based on SLPP Feature Extraction. 2021 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :46–49.
To improve the safety precaution level of network system, a combined network intrusion detection method is proposed based on Supervised Locality Preserving Projections (SLPP) feature extraction and Extreme Learning Machine (ELM). In this method, the feature extraction capability of SLPP is first used to reduce the dimensionality of the original network connection and system audit data, and get a feature set, then, based on this, the advantages of ELM in pattern recognition is adopted to build a network intrusion detection model for detecting and determining intrusion behavior. Simulation results show that, under the same experiment conditions, compared with traditional neural networks and support vector machines, the proposed method has more advantages in training efficiency and generalization performance.
2022-02-25
Abutaha, Mohammed, Ababneh, Mohammad, Mahmoud, Khaled, Baddar, Sherenaz Al-Haj.  2021.  URL Phishing Detection using Machine Learning Techniques based on URLs Lexical Analysis. 2021 12th International Conference on Information and Communication Systems (ICICS). :147—152.
Phishing URLs mainly target individuals and/or organizations through social engineering attacks by exploiting the humans' weaknesses in information security awareness. These URLs lure online users to access fake websites, and harvest their confidential information, such as debit/credit card numbers and other sensitive information. In this work, we introduce a phishing detection technique based on URL lexical analysis and machine learning classifiers. The experiments were carried out on a dataset that originally contained 1056937 labeled URLs (phishing and legitimate). This dataset was processed to generate 22 different features that were reduced further to a smaller set using different features reduction techniques. Random Forest, Gradient Boosting, Neural Network and Support Vector Machine (SVM) classifiers were all evaluated, and results show the superiority of SVMs, which achieved the highest accuracy in detecting the analyzed URLs with a rate of 99.89%. Our approach can be incorporated within add-on/middleware features in Internet browsers for alerting online users whenever they try to access a phishing website using only its URL.
2022-02-24
Musa, Usman Shuaibu, Chakraborty, Sudeshna, Abdullahi, Muhammad M., Maini, Tarun.  2021.  A Review on Intrusion Detection System Using Machine Learning Techniques. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :541–549.
Computer networks are exposed to cyber related attacks due to the common usage of internet, as the result of such, several intrusion detection systems (IDSs) were proposed by several researchers. Among key research issues in securing network is detecting intrusions. It helps to recognize unauthorized usage and attacks as a measure to ensure the secure the network's security. Various approaches have been proposed to determine the most effective features and hence enhance the efficiency of intrusion detection systems, the methods include, machine learning-based (ML), Bayesian based algorithm, nature inspired meta-heuristic techniques, swarm smart algorithm, and Markov neural network. Over years, the various works being carried out were evaluated on different datasets. This paper presents a thorough review on various research articles that employed single, hybrid and ensemble classification algorithms. The results metrics, shortcomings and datasets used by the studied articles in the development of IDS were compared. A future direction for potential researches is also given.
2022-02-22
Wink, Tobias, Nochta, Zoltan.  2021.  An Approach for Peer-to-Peer Federated Learning. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :150—157.
We present a novel approach for the collaborative training of neural network models in decentralized federated environments. In the iterative process a group of autonomous peers run multiple training rounds to train a common model. Thereby, participants perform all model training steps locally, such as stochastic gradient descent optimization, using their private, e.g. mission-critical, training datasets. Based on locally updated models, participants can jointly determine a common model by averaging all associated model weights without sharing the actual weight values. For this purpose we introduce a simple n-out-of-n secret sharing schema and an algorithm to calculate average values in a peer-to-peer manner. Our experimental results with deep neural networks on well-known sample datasets prove the generic applicability of the approach, with regard to model quality parameters. Since there is no need to involve a central service provider in model training, the approach can help establish trustworthy collaboration platforms for businesses with high security and data protection requirements.
2022-02-09
Ranade, Priyanka, Piplai, Aritran, Mittal, Sudip, Joshi, Anupam, Finin, Tim.  2021.  Generating Fake Cyber Threat Intelligence Using Transformer-Based Models. 2021 International Joint Conference on Neural Networks (IJCNN). :1–9.
Cyber-defense systems are being developed to automatically ingest Cyber Threat Intelligence (CTI) that contains semi-structured data and/or text to populate knowledge graphs. A potential risk is that fake CTI can be generated and spread through Open-Source Intelligence (OSINT) communities or on the Web to effect a data poisoning attack on these systems. Adversaries can use fake CTI examples as training input to subvert cyber defense systems, forcing their models to learn incorrect inputs to serve the attackers' malicious needs. In this paper, we show how to automatically generate fake CTI text descriptions using transformers. Given an initial prompt sentence, a public language model like GPT-2 with fine-tuning can generate plausible CTI text that can mislead cyber-defense systems. We use the generated fake CTI text to perform a data poisoning attack on a Cybersecurity Knowledge Graph (CKG) and a cybersecurity corpus. The attack introduced adverse impacts such as returning incorrect reasoning outputs, representation poisoning, and corruption of other dependent AI-based cyber defense systems. We evaluate with traditional approaches and conduct a human evaluation study with cyber-security professionals and threat hunters. Based on the study, professional threat hunters were equally likely to consider our fake generated CTI and authentic CTI as true.
Xu, Xiaojun, Wang, Qi, Li, Huichen, Borisov, Nikita, Gunter, Carl A., Li, Bo.  2021.  Detecting AI Trojans Using Meta Neural Analysis. 2021 IEEE Symposium on Security and Privacy (SP). :103–120.
In machine learning Trojan attacks, an adversary trains a corrupted model that obtains good performance on normal data but behaves maliciously on data samples with certain trigger patterns. Several approaches have been proposed to detect such attacks, but they make undesirable assumptions about the attack strategies or require direct access to the trained models, which restricts their utility in practice.This paper addresses these challenges by introducing a Meta Neural Trojan Detection (MNTD) pipeline that does not make assumptions on the attack strategies and only needs black-box access to models. The strategy is to train a meta-classifier that predicts whether a given target model is Trojaned. To train the meta-model without knowledge of the attack strategy, we introduce a technique called jumbo learning that samples a set of Trojaned models following a general distribution. We then dynamically optimize a query set together with the meta-classifier to distinguish between Trojaned and benign models.We evaluate MNTD with experiments on vision, speech, tabular data and natural language text datasets, and against different Trojan attacks such as data poisoning attack, model manipulation attack, and latent attack. We show that MNTD achieves 97% detection AUC score and significantly outperforms existing detection approaches. In addition, MNTD generalizes well and achieves high detection performance against unforeseen attacks. We also propose a robust MNTD pipeline which achieves around 90% detection AUC even when the attacker aims to evade the detection with full knowledge of the system.
Cinà, Antonio Emanuele, Vascon, Sebastiano, Demontis, Ambra, Biggio, Battista, Roli, Fabio, Pelillo, Marcello.  2021.  The Hammer and the Nut: Is Bilevel Optimization Really Needed to Poison Linear Classifiers? 2021 International Joint Conference on Neural Networks (IJCNN). :1–8.
One of the most concerning threats for modern AI systems is data poisoning, where the attacker injects maliciously crafted training data to corrupt the system's behavior at test time. Availability poisoning is a particularly worrisome subset of poisoning attacks where the attacker aims to cause a Denial-of-Service (DoS) attack. However, the state-of-the-art algorithms are computationally expensive because they try to solve a complex bi-level optimization problem (the ``hammer''). We observed that in particular conditions, namely, where the target model is linear (the ``nut''), the usage of computationally costly procedures can be avoided. We propose a counter-intuitive but efficient heuristic that allows contaminating the training set such that the target system's performance is highly compromised. We further suggest a re-parameterization trick to decrease the number of variables to be optimized. Finally, we demonstrate that, under the considered settings, our framework achieves comparable, or even better, performances in terms of the attacker's objective while being significantly more computationally efficient.
2022-02-07
Singh, Shirish, Kaiser, Gail.  2021.  Metamorphic Detection of Repackaged Malware. 2021 IEEE/ACM 6th International Workshop on Metamorphic Testing (MET). :9–16.
Machine learning-based malware detection systems are often vulnerable to evasion attacks, in which a malware developer manipulates their malicious software such that it is misclassified as benign. Such software hides some properties of the real class or adopts some properties of a different class by applying small perturbations. A special case of evasive malware hides by repackaging a bonafide benign mobile app to contain malware in addition to the original functionality of the app, thus retaining most of the benign properties of the original app. We present a novel malware detection system based on metamorphic testing principles that can detect such benign-seeming malware apps. We apply metamorphic testing to the feature representation of the mobile app, rather than to the app itself. That is, the source input is the original feature vector for the app and the derived input is that vector with selected features removed. If the app was originally classified benign, and is indeed benign, the output for the source and derived inputs should be the same class, i.e., benign, but if they differ, then the app is exposed as (likely) malware. Malware apps originally classified as malware should retain that classification, since only features prevalent in benign apps are removed. This approach enables the machine learning model to classify repackaged malware with reasonably few false negatives and false positives. Our training pipeline is simpler than many existing ML-based malware detection methods, as the network is trained end-to-end to jointly learn appropriate features and to perform classification. We pre-trained our classifier model on 3 million apps collected from the widely-used AndroZoo dataset.1 We perform an extensive study on other publicly available datasets to show our approach's effectiveness in detecting repackaged malware with more than 94% accuracy, 0.98 precision, 0.95 recall, and 0.96 F1 score.
Wang, Shuwei, Wang, Qiuyun, Jiang, Zhengwei, Wang, Xuren, Jing, Rongqi.  2021.  A Weak Coupling of Semi-Supervised Learning with Generative Adversarial Networks for Malware Classification. 2020 25th International Conference on Pattern Recognition (ICPR). :3775–3782.
Malware classification helps to understand its purpose and is also an important part of attack detection. And it is also an important part of discovering attacks. Due to continuous innovation and development of artificial intelligence, it is a trend to combine deep learning with malware classification. In this paper, we propose an improved malware image rescaling algorithm (IMIR) based on local mean algorithm. Its main goal of IMIR is to reduce the loss of information from samples during the process of converting binary files to image files. Therefore, we construct a neural network structure based on VGG model, which is suitable for image classification. In the real world, a mass of malware family labels are inaccurate or lacking. To deal with this situation, we propose a novel method to train the deep neural network by Semi-supervised Generative Adversarial Network (SGAN), which only needs a small amount of malware that have accurate labels about families. By integrating SGAN with weak coupling, we can retain the weak links of supervised part and unsupervised part of SGAN. It improves the accuracy of malware classification by making classifiers more independent of discriminators. The results of experimental demonstrate that our model achieves exhibiting favorable performance. The recalls of each family in our data set are all higher than 93.75%.
Yang, Chen, Yang, Zepeng, Hou, Jia, Su, Yang.  2021.  A Lightweight Full Homomorphic Encryption Scheme on Fully-connected Layer for CNN Hardware Accelerator achieving Security Inference. 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS). :1–4.
The inference results of neural network accelerators often involve personal privacy or business secrets in intelligent systems. It is important for the safety of convolutional neural network (CNN) accelerator to prevent the key data and inference result from being leaked. The latest CNN models have started to combine with fully homomorphic encryption (FHE), ensuring the data security. However, the computational complexity, data storage overhead, inference time are significantly increased compared with the traditional neural network models. This paper proposed a lightweight FHE scheme on fully-connected layer for CNN hardware accelerator to achieve security inference, which not only protects the privacy of inference results, but also avoids excessive hardware overhead and great performance degradation. Compared with state-of-the-art works, this work reduces computational complexity by approximately 90% and decreases ciphertext size by 87%∼95%.