Biblio
This paper examines multiple machine learning models to find the model that best indicates anomalous activity in an industrial control system that is under a software-based attack. The researched machine learning models are Random Forest, Gradient Boosting Machine, Artificial Neural Network, and Recurrent Neural Network classifiers built-in Python and tested against the HIL-based Augmented ICS dataset. Although the results showed that Random Forest, Gradient Boosting Machine, Artificial Neural Network, and Long Short-Term Memory classification models have great potential for anomaly detection in industrial control systems, we found that Random Forest with tuned hyperparameters slightly outperformed the other models.
In recent years, artificial intelligence has been widely used in the field of network security, which has significantly improved the effect of network security analysis and detection. However, because the power industrial control system is faced with the problem of shortage of attack data, the direct deployment of the network intrusion detection system based on artificial intelligence is faced with the problems of lack of data, low precision, and high false alarm rate. To solve this problem, we propose an anomaly traffic detection method based on cross-domain knowledge transferring. By using the TrAdaBoost algorithm, we achieve a lower error rate than using LSTM alone.
Motions of facial components convey significant information of facial expressions. Although remarkable advancement has been made, the dynamic of facial topology has not been fully exploited. In this paper, a novel facial expression recognition (FER) algorithm called Spatial Temporal Semantic Graph Network (STSGN) is proposed to automatically learn spatial and temporal patterns through end-to-end feature learning from facial topology structure. The proposed algorithm not only has greater discriminative power to capture the dynamic patterns of facial expression and stronger generalization capability to handle different variations but also higher interpretability. Experimental evaluation on two popular datasets, CK+ and Oulu-CASIA, shows that our algorithm achieves more competitive results than other state-of-the-art methods.
One of the most efficient tool for human face recognition is neural networks. However, the result of recognition can be spoiled by facial expressions and other deviation from the canonical face representation. In this paper, we propose a resampling method of human faces represented by 3D point clouds. The method is based on a non-rigid Iterative Closest Point (ICP) algorithm. To improve the facial recognition performance, we use a combination of the proposed method and convolutional neural network (CNN). Computer simulation results are provided to illustrate the performance of the proposed method.
New research fields and applications on human computer interaction will emerge based on the recognition of emotions on faces. With such aim, our study evaluates the features extracted from faces to recognize emotions. To increase the success rate of these features, we have run several tests to demonstrate how age and gender affect the results. The artificial neural networks were trained by the apparent regions on the face such as eyes, eyebrows, nose, mouth, and jawline and then the networks are tested with different age and gender groups. According to the results, faces of older people have a lower performance rate of emotion recognition. Then, age and gender based groups are created manually, and we show that performance rates of facial emotion recognition have increased for the networks that are trained using these particular groups.
Machine learning techniques help to understand underlying patterns in datasets to develop defense mechanisms against cyber attacks. Multilayer Perceptron (MLP) technique is a machine learning technique used in detecting attack vs. benign data. However, it is difficult to construct any effective model when there are imbalances in the dataset that prevent proper classification of attack samples in data. In this research, we use UGR'16 dataset to conduct data wrangling initially. This technique helps to prepare a test set from the original dataset to train the neural network model effectively. We experimented with a series of inputs of varying sizes (i.e. 10000, 50000, 1 million) to observe the performance of the MLP neural network model with distribution of features over accuracy. Later, we use Generative Adversarial Network (GAN) model that produces samples of different attack labels (e.g. blacklist, anomaly spam, ssh scan) for balancing the dataset. These samples are generated based on data from the UGR'16 dataset. Further experiments with MLP neural network model shows that a balanced attack sample dataset, made possible with GAN, produces more accurate results than an imbalanced one.
To ensure security, Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is widely used in people's online lives. This paper presents a Chinese character captcha sequential selection system based on convolutional neural network (CNN). Captchas composed of English and digits can already be identified with extremely high accuracy, but Chinese character captcha recognition is still challenging. The task we need to complete is to identify Chinese characters with different colors and different fonts that are not on a straight line with rotation and affine transformation on pictures with complex backgrounds, and then perform word order restoration on the identified Chinese characters. We divide the task into several sub-processes: Chinese character detection based on Faster R-CNN, Chinese character recognition and word order recovery based on N-Gram. In the Chinese character recognition sub-process, we have made outstanding contributions. We constructed a single Chinese character data set and built a 10-layer convolutional neural network. Eventually we achieved an accuracy of 98.43%, and completed the task perfectly.
Deep Learning (DL), in spite of its huge success in many new fields, is extremely vulnerable to adversarial attacks. We demonstrate how an attacker applies physical white-box and black-box adversarial attacks to Channel decoding systems based on DL. We show that these attacks can affect the systems and decrease performance. We uncover that these attacks are more effective than conventional jamming attacks. Additionally, we show that classical decoding schemes are more robust than the deep learning channel decoding systems in the presence of both adversarial and jamming attacks.
Today our world benefits from Internet of Things (IoT) technology; however, new security problems arise when these IoT devices are introduced into our homes. Because many of these IoT devices have access to the Internet and they have little to no security, they make our smart homes highly vulnerable to compromise. Some of the threats include IoT botnets and generic confidentiality, integrity, and availability (CIA) attacks. Our research explores botnet detection by experimenting with supervised machine learning and deep-learning classifiers. Further, our approach assesses classifier performance on unbalanced datasets that contain benign data, mixed in with small amounts of malicious data. We demonstrate that the classifiers can separate malicious activity from benign activity within a small IoT network dataset. The classifiers can also separate malicious activity from benign activity in increasingly larger datasets. Our experiments have demonstrated incremental improvement in results for (1) accuracy, (2) probability of detection, and (3) probability of false alarm. The best performance results include 99.9% accuracy, 99.8% probability of detection, and 0% probability of false alarm. This paper also demonstrates how the performance of these classifiers increases, as IoT training datasets become larger and larger.
The increase of cyber attacks in both the numbers and varieties in recent years demands to build a more sophisticated network intrusion detection system (NIDS). These NIDS perform better when they can monitor all the traffic traversing through the network like when being deployed on a Software-Defined Network (SDN). Because of the inability to detect zero-day attacks, signature-based NIDS which were traditionally used for detecting malicious traffic are beginning to get replaced by anomaly-based NIDS built on neural networks. However, recently it has been shown that such NIDS have their own drawback namely being vulnerable to the adversarial example attack. Moreover, they were mostly evaluated on the old datasets which don't represent the variety of attacks network systems might face these days. In this paper, we present Reconstruction from Partial Observation (RePO) as a new mechanism to build an NIDS with the help of denoising autoencoders capable of detecting different types of network attacks in a low false alert setting with an enhanced robustness against adversarial example attack. Our evaluation conducted on a dataset with a variety of network attacks shows denoising autoencoders can improve detection of malicious traffic by up to 29% in a normal setting and by up to 45% in an adversarial setting compared to other recently proposed anomaly detectors.
To ensure quality of service and user experience, large Internet companies often monitor various Key Performance Indicators (KPIs) of their systems so that they can detect anomalies and identify failure in real time. However, due to a large number of various KPIs and the lack of high-quality labels, existing KPI anomaly detection approaches either perform well only on certain types of KPIs or consume excessive resources. Therefore, to realize generic and practical KPI anomaly detection in the real world, we propose a KPI anomaly detection framework named iRRCF-Active, which contains an unsupervised and white-box anomaly detector based on Robust Random Cut Forest (RRCF), and an active learning component. Specifically, we novelly propose an improved RRCF (iRRCF) algorithm to overcome the drawbacks of applying original RRCF in KPI anomaly detection. Besides, we also incorporate the idea of active learning to make our model benefit from high-quality labels given by experienced operators. We conduct extensive experiments on a large-scale public dataset and a private dataset collected from a large commercial bank. The experimental resulta demonstrate that iRRCF-Active performs better than existing traditional statistical methods, unsupervised learning methods and supervised learning methods. Besides, each component in iRRCF-Active has also been demonstrated to be effective and indispensable.
Port scans are a persistent problem on contemporary communication networks. Typically used as an attack reconnaissance tool, they can also create problems with application performance and throughput. This paper describes an architecture that deploys sequential neural networks (NNs) to classify packets, separate TCP datagrams, determine the type of TCP packet and detect port scans. Sequential networks allow this lengthy task to learn from the current environment and to be broken up into component parts. Following classification, analysis is performed in order to discover scan attempts. We show that neural networks can be used to successfully classify general packetized traffic at recognition rates above 99% and more complex TCP classes at rates that are also above 99%. We demonstrate that this specific communications task can successfully be broken up into smaller work loads. When tested against actual NMAP scan pcap files, this model successfully discovers open ports and the scan attempts with the same high percentage and low false positives.
A THz image edge detection approach based on wavelet and neural network is proposed in this paper. First, the source image is decomposed by wavelet, the edges in the low-frequency sub-image are detected using neural network method and the edges in the high-frequency sub-images are detected using wavelet transform method on the coarsest level of the wavelet decomposition, the two edge images are fused according to some fusion rules to obtain the edge image of this level, it then is projected to the next level. Afterwards the final edge image of L-1 level is got according to some fusion rule. This process is repeated until reaching the 0 level thus to get the final integrated and clear edge image. The experimental results show that our approach based on fusion technique is superior to Canny operator method and wavelet transform method alone.
Data privacy has been an important area of research in recent years. Dataset often consists of sensitive data fields, exposure of which may jeopardize interests of individuals associated with the data. In order to resolve this issue, privacy techniques can be used to hinder the identification of a person through anonymization of the sensitive data in the dataset to protect sensitive information, while the anonymized dataset can be used by the third parties for analysis purposes without obstruction. In this research, we investigated a privacy technique, k-anonymity for different values of on different number columns of the dataset. Next, the information loss due to k-anonymity is computed. The anonymized files go through the classification process by some machine-learning algorithms i.e., Naive Bayes, J48 and neural network in order to check a balance between data anonymity and data utility. Based on the classification accuracy, the optimal values of and are obtained, and thus, the optimal and can be used for k-anonymity algorithm to anonymize optimal number of columns of the dataset.
Artificial neural networks in general and deep learning networks in particular established themselves as popular and powerful machine learning algorithms. While the often tremendous sizes of these networks are beneficial when solving complex tasks, the tremendous number of parameters also causes such networks to be vulnerable to malicious behavior such as adversarial perturbations. These perturbations can change a model's classification decision. Moreover, while single-step adversaries can easily be transferred from network to network, the transfer of more powerful multi-step adversaries has - usually - been rather difficult.In this work, we introduce a method for generating strong adversaries that can easily (and frequently) be transferred between different models. This method is then used to generate a large set of adversaries, based on which the effects of selected defense methods are experimentally assessed. At last, we introduce a novel, simple, yet effective approach to enhance the resilience of neural networks against adversaries and benchmark it against established defense methods. In contrast to the already existing methods, our proposed defense approach is much more efficient as it only requires a single additional forward-pass to achieve comparable performance results.
In this work, an asymmetric cryptography method for information security was developed, inspired by the fact that the human body generates chaotic signals, and these signals can be used to create sequences of random numbers. Encryption circuit was implemented in a Reconfigurable Hardware (FPGA). To encode and decode an image, the chaotic synchronization between two dynamic systems, such as Hopfield neural networks (HNNs), was used to simulate chaotic signals. The notion of Homotopy, an argument of topological nature, was used for the synchronization. The results show efficiency when compared to state of the art, in terms of image correlation, histogram analysis and hardware implementation.