Biblio
The Internet of Things (IoT) has been growing rapidly in recent years. With the appearance of 5G, it is expected to become even more indispensable to people's lives. In accordance with the increase of Distributed Denial-of-Service (DDoS) attacks from IoT devices, DDoS defense has become a hot research topic. DDoS detection mechanisms executed on routers and SDN environments have been intensely studied. However, these methods have the disadvantage of requiring the cost and performance of the devices. In addition, there is no existing DDoS mitigation algorithm on the network edge that can be performed with the low-cost and low-performance equipment. Therefore, this paper proposes a light-weight DDoS mitigation scheme at the network edge using limited resources of inexpensive devices such as home gateways. The goal of the proposed scheme is to detect and mitigate flooding attacks. It utilizes unused queue resources to detect malicious flows by random shuffling of queue allocation and discard the packets of the detected flows. The performance of the proposed scheme was confirmed via theoretical analysis and computer simulation. The simulation results match the theoretical results and the proposed algorithm can efficiently detect malicious flows using limited resources.
It has been a hot research topic to detect and mitigate Distributed Denial-of-Service (DDoS) attacks due to the significant increase of serious threat of such attacks. The rapid growth of Internet of Things (IoT) has intensified this trend, e.g. the Mirai botnet and variants. To address this issue, a light-weight DDoS mitigation mechanism was presented. In the proposed scheme, flooding attacks are detected by stochastic queue allocation which can be executed with widespread and inexpensive commercial products at a network edge. However, the detection process is delayed when the number of incoming flows is large because of the randomness of queue allocation. Thus, in this paper we propose an efficient queue allocation algorithm for rapid DDoS mitigation using limited resources. The idea behind the proposed scheme is to avoid duplicate allocation by decreasing the randomness of the existing scheme. The performance of the proposed scheme was confirmed via theoretical analysis and computer simulation. As a result, it was confirmed that malicious flows are efficiently detected and discarded with the proposed algorithm.
Aiming at the requirements of network access control, illegal outreach control, identity authentication, security monitoring and application system access control of information network, an integrated network access and behavior control model based on security policy is established. In this model, the network access and behavior management control process is implemented through abstract policy configuration, network device and application server, so that management has device-independent abstraction, and management simplification, flexibility and automation are improved. On this basis, a general framework of policy-based access and behavior management control is established. Finally, an example is given to illustrate the method of device connection, data drive and fusion based on policy-based network access and behavior management control.
With the development of the Internet of Things (IoT), it has been widely deployed. As many embedded devices are connected to the network and massive amounts of security-sensitive data are stored in these devices, embedded devices in IoT have become the target of attackers. The trusted computing is a key technology to guarantee the security and trustworthiness of devices' execution environment. This paper focuses on security problems on IoT devices, and proposes a security architecture for IoT devices based on the trusted computing technology. This paper implements a security management system for IoT devices, which can perform integrity measurement, real-time monitoring and security management for embedded applications, providing a safe and reliable execution environment and whitelist-based security protection for IoT devices. This paper also designs and implements an embedded security protection system based on trusted computing technology, containing a measurement and control component in the kernel and a remote graphical management interface for administrators. The kernel layer enforces the integrity measurement and control of the embedded application on the device. The graphical management interface communicates with the remote embedded device through the TCP/IP protocol, and provides a feature-rich and user-friendly interaction interface. It implements functions such as knowledge base scanning, whitelist management, log management, security policy management, and cryptographic algorithm performance testing.
With the increasing diversity of application needs (datacenters, IoT, content retrieval, industrial automation, etc.), new network architectures are continually being proposed to address specific and particular requirements. From a network management perspective, it is both important and challenging to enable evolution towards such new architectures. Given the ubiquity of the Internet, a clean-slate change of the entire infrastructure to a new architecture is impractical. It is believed that we will see new network architectures coming into existence with support for interoperability between separate architectural islands. We may have servers, and more importantly, content, residing in domains having different architectures. This paper presents COIN, a content-oriented interoperability framework for current and future Internet architectures. We seek to provide seamless connectivity and content accessibility across multiple of these network architectures, including the current Internet. COIN preserves each domain's key architectural features and mechanisms, while allowing flexibility for evolvability and extensibility. We focus on Information-Centric Networks (ICN), the prominent class of Future Internet architectures. COIN avoids expanding domain-specific protocols or namespaces. Instead, it uses an application-layer Object Resolution Service to deliver the right "foreign" names to consumers. COIN uses translation gateways that retain essential interoperability state, leverages encryption for confidentiality, and relies on domain-specific signatures to guarantee provenance and data integrity. Using NDN and MobilityFirst as important candidate solutions of ICN, and IP, we evaluate COIN. Measurements from an implementation of the gateways show that the overhead is manageable and scales well.
Although OpenFlow-based SDN networks make it easier to design and test new protocols, when you think of clean slate architectures, their use is quite limited because the parameterization of its flows resides primarily in TCP/IP protocols. Besides, despite the many benefits that SDN offers, some aspects have not yet been adequately addressed, such as management plane activities, network startup, and options for connecting the data plane to the control plane. Based on these issues and limitations, this work presents a bootstrap protocol for SDN-based networks, which allows, beyond the network topology discovery, automatic configuration of an inband control plane. The protocol is designed to act only on layer two, in an autonomous, distributed and deterministic way, with low overhead and has the intent to be the basement for the implementation of other management plane related activities. A formal specification of the protocol is provided. In addition, an analytical model was created to preview the number of required messages to establish the control plane. According to this model, the proposed protocol presents less overhead than similar de-facto protocols used to topology discovery in SDN networks.
The legacy security defense mechanisms cannot resist where emerging sophisticated threats such as zero-day and malware campaigns have profoundly changed the dimensions of cyber-attacks. Recent studies indicate that cyber threat intelligence plays a crucial role in implementing proactive defense operations. It provides a knowledge-sharing platform that not only increases security awareness and readiness but also enables the collaborative defense to diminish the effectiveness of potential attacks. In this paper, we propose a secure distributed model to facilitate cyber threat intelligence sharing among diverse participants. The proposed model uses blockchain technology to assure tamper-proof record-keeping and smart contracts to guarantee immutable logic. We use an open-source permissioned blockchain platform, Hyperledger Fabric, to implement the blockchain application. We also utilize the flexibility and management capabilities of Software-Defined Networking to be integrated with the proposed sharing platform to enhance defense perspectives against threats in the system. In the end, collaborative DDoS attack mitigation is taken as a case study to demonstrate our approach.
Device management in large networks is of growing importance to network administrators and security analysts alike. The composition of devices on a network can help forecast future traffic demand as well as identify devices that may pose a security risk. However, the sheer number and diversity of devices that comprise most modern networks have vastly increased the management complexity. Motivated by a need for an encryption-invariant device management strategy, we use affiliation graphs to develop a methodology that reveals key insights into the devices acting on a network using only the source and destination IP addresses. Through an empirical analysis of the devices on a university campus network, we provide an example methodology to infer a device's characteristics (e.g., operating system) through the services it communicates with via the Internet.
Enterprise networks are increasingly moving towards Software Defined Networking, which is becoming a major trend in the networking arena. With the increased popularity of SDN, there is a greater need for security measures for protecting the enterprise networks. This paper focuses on the design and implementation of an integrated security architecture for SDN based enterprise networks. The integrated security architecture uses a policy-based approach to coordinate different security mechanisms to detect and counteract a range of security attacks in the SDN. A distinguishing characteristic of the proposed architecture is its ability to deal with dynamic changes in the security attacks as well as changes in trust associated with the network devices in the infrastructure. The adaptability of the proposed architecture to dynamic changes is achieved by having feedback between the various security components/mechanisms in the architecture and managing them using a dynamic policy framework. The paper describes the prototype implementation of the proposed architecture and presents security and performance analysis for different attack scenarios. We believe that the proposed integrated security architecture provides a significant step towards achieving a secure SDN for enterprises.
Most of the authentication protocols assume the existence of a Trusted Third Party (TTP) in the form of a Certificate Authority or as an authentication server. The main objective of this research is to present an autonomous solution where users could store their credentials, without depending on TTPs. For this, the use of an autonomous network is imperative, where users could use their uniqueness in order to identify themselves. We propose the framework “Three Blockchains Identity Management with Elliptic Curve Cryptography (3BI-ECC)”. Our proposed framework is a decentralize identity management system where users' identities are self-generated.
Accurate network traffic identification is an important basis for network traffic monitoring and data analysis, and is the key to improve the quality of user service. In this paper, through the analysis of two network traffic identification methods based on machine learning and deep packet inspection, a network traffic identification method based on machine learning and deep packet inspection is proposed. This method uses deep packet inspection technology to identify most network traffic, reduces the workload that needs to be identified by machine learning method, and deep packet inspection can identify specific application traffic, and improves the accuracy of identification. Machine learning method is used to assist in identifying network traffic with encryption and unknown features, which makes up for the disadvantage of deep packet inspection that can not identify new applications and encrypted traffic. Experiments show that this method can improve the identification rate of network traffic.
Military reconnaissance in 1999 has paved the way to establish its own, self-reliant and indigenous navigation system. The strategic necessity has been accomplished in 2013 by launching seven satellites in Geo-orbit and underlying Network control center in Bangalore and a new NavIC control center at Lucknow, later in 2016. ISTRAC is one of the premier and amenable center to track the Indian as well as external network satellite launch vehicle and provide house-keeping and inertial navigation (INC) data to launch control center in real time and to project team in off-line. Over the ISTRAC Launch network, Simple Network Management Protocol (SNMP) was disabled due to security and bandwidth reasons. The cons of SNMP comprise security risks that are normal trait whenever applied as an open standard. There is "security through obscurity" linked with any slight-used communications standard in SNMP. Detailed messages are being sent between devices, not just miniature pre-set codes. These cons in the SNMP are found in majority applications and more bandwidth seizure is another contention. Due to the above pros and cones in SNMP in form of open source, available network monitoring system (NMS) could not be employed for link monitoring and immediate decision making in ISTRAC network. The situation has made requisitions to evolve an in-house network monitoring system (NMS). It was evolved for real-time network monitoring as well as communication link performance explication. The evolved system has the feature of Internet control message protocol (ICMP) based link monitoring, 24/7 monitoring of all the nodes, GUI based real-time link status, Summary and individual link statistics on the GUI. It also identifies total downtime and generates summary reports. It does identification for out of order or looped packets, Email and SMS alert to Prime and Redundant system which one is down and repeat alert if the link is failed for more than 30 minutes. It has easy file based configuration and no application restart required. Generation of daily and monthly link status, offline link analysis plot of any day, less consumption of system resources are add-on features. It is fully secured in-house development, calculates total data flow over a network and co-relate data vs link percentage.