Visible to the public Biblio

Filters: Keyword is Electromagnetics  [Clear All Filters]
2021-09-09
Zhang, Jiaxin, Li, Yongming.  2020.  Adaptive Fuzzy Control for Active Suspension Systems with Stochastic Disturbance and Full State Constraints*. 2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI). :380–385.
In this paper, an adaptive fuzzy control scheme is proposed for one-quarter automotive active suspension system with full sate constraints and stochastic disturbance. In the considered active suspension system, to further improve the driving security and comfort, the problems of stochastic perturbation and full state constraints are considered simultaneously. In the framework of backstepping, the barrier Lyapunov function is proposed to constrain full state variables. Consequently, by combing the Itô differential formula and stochastic control theory, an adaptive controller is designed to adopt the uneven pavement surface. Ultimately, on the basis of Lyapunov stability theory, it proves that the designed controller not only can constrain the bodywork, the displacement of tires, the current of the electromagnetic actuator, the speeds of the car body and the tires within boundaries, but also can eliminate the stochastic disturbance.
2020-12-14
Efendioglu, H. S., Asik, U., Karadeniz, C..  2020.  Identification of Computer Displays Through Their Electromagnetic Emissions Using Support Vector Machines. 2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA). :1–5.
As a TEMPEST information security problem, electromagnetic emissions from the computer displays can be captured, and reconstructed using signal processing techniques. It is necessary to identify the display type to intercept the image of the display. To determine the display type not only significant for attackers but also for protectors to prevent display compromising emanations. This study relates to the identification of the display type using Support Vector Machines (SVM) from electromagnetic emissions emitted from computer displays. After measuring the emissions using receiver measurement system, the signals were processed and training/test data sets were formed and the classification performance of the displays was examined with the SVM. Moreover, solutions for a better classification under real conditions have been proposed. Thus, one of the important step of the display image capture can accomplished by automatically identification the display types. The performance of the proposed method was evaluated in terms of confusion matrix and accuracy, precision, F1-score, recall performance measures.
2020-11-17
Nasim, I., Kim, S..  2019.  Human EMF Exposure in Wearable Networks for Internet of Battlefield Things. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1—6.

Numerous antenna design approaches for wearable applications have been investigated in the literature. As on-body wearable communications become more ingrained in our daily activities, the necessity to investigate the impacts of these networks burgeons as a major requirement. In this study, we investigate the human electromagnetic field (EMF) exposure effect from on-body wearable devices at 2.4 GHz and 60 GHz, and compare the results to illustrate how the technology evolution to higher frequencies from wearable communications can impact our health. Our results suggest the average specific absorption rate (SAR) at 60 GHz can exceed the regulatory guidelines within a certain separation distance between a wearable device and the human skin surface. To the best of authors' knowledge, this is the first work that explicitly compares the human EMF exposure at different operating frequencies for on-body wearable communications, which provides a direct roadmap in design of wearable devices to be deployed in the Internet of Battlefield Things (IoBT).

2020-09-18
Kaji, Shugo, Kinugawa, Masahiro, Fujimoto, Daisuke, Hayashi, Yu-ichi.  2019.  Data Injection Attack Against Electronic Devices With Locally Weakened Immunity Using a Hardware Trojan. IEEE Transactions on Electromagnetic Compatibility. 61:1115—1121.
Intentional electromagnetic interference (IEMI) of information and communication devices is based on high-power electromagnetic environments far exceeding the device immunity to electromagnetic interference. IEMI dramatically alters the electromagnetic environment throughout the device by interfering with the electromagnetic waves inside the device and destroying low-tolerance integrated circuits (ICs) and other elements, thereby reducing the availability of the device. In contrast, in this study, by using a hardware Trojan (HT) that is quickly mountable by physically accessing the devices, to locally weaken the immunity of devices, and then irradiating electromagnetic waves of a specific frequency, only the attack targets are intentionally altered electromagnetically. Therefore, we propose a method that uses these electromagnetic changes to rewrite or generate data and commands handled within devices. Specifically, targeting serial communication systems used inside and outside the devices, the installation of an HT on the communication channel weakens local immunity. This shows that it is possible to generate an electrical signal representing arbitrary data on the communication channel by applying electromagnetic waves of sufficiently small output compared with the conventional IEMI and letting the IC process the data. In addition, we explore methods for countering such attacks.
2020-08-07
Davenport, Amanda, Shetty, Sachin.  2019.  Modeling Threat of Leaking Private Keys from Air-Gapped Blockchain Wallets. 2019 IEEE International Smart Cities Conference (ISC2). :9—13.

In this paper we consider the threat surface and security of air gapped wallet schemes for permissioned blockchains as preparation for a Markov based mathematical model, and quantify the risk associated with private key leakage. We identify existing threats to the wallet scheme and existing work done to both attack and secure the scheme. We provide an overview the proposed model and outline justification for our methods. We follow with next steps in our remaining work and the overarching goals and motivation for our methods.

Davenport, Amanda, Shetty, Sachin.  2019.  Air Gapped Wallet Schemes and Private Key Leakage in Permissioned Blockchain Platforms. 2019 IEEE International Conference on Blockchain (Blockchain). :541—545.

In this paper we consider the threat surface and security of air gapped wallet schemes for permissioned blockchains as preparation for a Markov based mathematical model, and quantify the risk associated with private key leakage. We identify existing threats to the wallet scheme and existing work done to both attack and secure the scheme. We provide an overview the proposed model and outline justification for our methods. We follow with next steps in our remaining work and the overarching goals and motivation for our methods.

2020-04-24
Kim, Chang-Woo, Jang, Gang-Heyon, Shin, Kyung-Hun, Jeong, Sang-Sub, You, Dae-Joon, Choi, Jang-Young.  2020.  Electromagnetic Design and Dynamic Characteristics of Permanent Magnet Linear Oscillating Machines Considering Instantaneous Inductance According to Mover Position. IEEE Transactions on Applied Superconductivity. 30:1—5.

Interior permanent magnet (IPM)-type linear oscillating actuators (LOAs) have a higher output power density than typical LOAs. Their mover consists of a permanent magnet (PM) and an iron core, however, this configuration generates significant side forces. The device can malfunction due to eccentricity in the electromagnetic behavior. Thus, here an electromagnetic design was developed to minimize this side force. In addition, dynamic analysis was performed considering the mechanical systems of LOAs. To perform a more accurate analysis, instantaneous inductance was considered according to the mover's position.

2020-03-18
Wang, Johnson J. H..  2019.  Solving Cybersecurity Problem by Symmetric Dual-Space Formulation—Physical and Cybernetic. 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. :601–602.
To address cybersecurity, this author proposed recently the approach of formulating it in symmetric dual-space and dual-system. This paper further explains this concept, beginning with symmetric Maxwell Equation (ME) and Fourier Transform (FT). The approach appears to be a powerful solution, with wide applications ranging from Electronic Warfare (EW) to 5G Mobile, etc.
2020-02-24
Moritz, Pierre, Mathieu, Fabrice, Bourrier, David, Saya, Daisuke, Blon, Thomas, Hasselbach, Klaus, Kramer, Roman, Nicu, Liviu, Lacroix, Lise-Marie, Viau, Guillaume et al..  2019.  Development Of Micro-Magnets For The Electromagnetic Transduction Of MEMS. 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems Eurosensors XXXIII (TRANSDUCERS EUROSENSORS XXXIII). :1748–1751.
This paper presents a new class of high-performance permanent micro-magnets based on the controlled assembly of cobalt nanorods for the electromagnetic transduction of MEMS. Micromagnets are fabricated using a low temperature fabrication process that yields a dense material exhibiting high coercive field and remanence to saturation magnetization ratio. The cartography of the magnetic induction produced by the sub-millimeter size magnets was obtained using a scanning Hall effect micro-probe microscope. Silicon microcantilevers placed in the vicinity of these magnets were successfully actuated using the Lorentz force with low currents. The good signal to noise ratio measured at resonance demonstrates the potentiality of these nanostructured micro-magnets.
Li, Baiqiang, Ma, Shaohua, Cai, Zhiyuan, Zheng, Yahong.  2019.  A Novel Method for Calculating Residual Magnetic Flux of DC Contactors. 2019 5th International Conference on Electric Power Equipment - Switching Technology (ICEPE-ST). :535–538.
Reliable calculation model of electromagnetic mechanism characteristics of DC contactor is of great significance to its structural optimization. In this paper, the excitation process of contactor magnet is summarized, and a new calculation model of hysteresis-finite element method is proposed. It can effectively calculate the remanence of the electromagnetic mechanism under different excitation conditions, and give the relationship curve between the remanence flux and the anti-remanence gap.
2020-01-13
Dyyak, Ivan, Horlatch, Vitaliy, Shynkarenko, Heorhiy.  2019.  Formulation and Numerical Analysis of Acoustics Problems in Coupled Thermohydroelastic Systems. 2019 XXIVth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED). :168–171.
The coupled thermohydroelastic processes of acoustic wave and heat propagation in weak viscous fluid and elastic bodies form the basis of dissipative acoustics. The problems of dissipative acoustics have many applications in engineering practice, in particular in the development of appropriate medical equipment. This paper presents mathematical models for time and frequency domain problems in terms of unknown displacements and temperatures in both the fluid and the elastic body. Formulated corresponding variational problems and constructed numerical schemes for their solution based on the Galerkin approximations. The method of proving the well-posedness of the considered variational problems is proposed.
2019-10-08
Kim, S., Jin, S., Lee, Y., Park, B., Kim, H., Hong, S..  2018.  Single Trace Side Channel Analysis on Quantum Key Distribution. 2018 International Conference on Information and Communication Technology Convergence (ICTC). :736–739.

The security of current key exchange protocols such as Diffie-Hellman key exchange is based on the hardness of number theoretic problems. However, these key exchange protocols are threatened by weak random number generators, advances to CPU power, a new attack from the eavesdropper, and the emergence of a quantum computer. Quantum Key Distribution (QKD) addresses these challenges by using quantum properties to exchange a secret key without the risk of being intercepted. Recent developments on the QKD system resulted in a stable key generation with fewer errors so that the QKD system is rapidly becoming a solid commercial proposition. However, although the security of the QKD system is guaranteed by quantum physics, its careless implementation could make the system vulnerable. In this paper, we proposed the first side-channel attack on plug-and-play QKD system. Through a single electromagnetic trace obtained from the phase modulator on Alice's side, we were able to classify the electromagnetic trace into four classes, which corresponds to the number of bit and basis combination in the BB84 protocol. We concluded that the plug-and-play QKD system is vulnerable to side-channel attack so that the countermeasure must be considered.

2018-09-12
Houchouas, V., Esteves, J. L., Cottais, E., Kasmi, C., Armstrong, K..  2017.  Immunity assessment of a servomotor exposed to an intentional train of RF pulses. 2017 International Symposium on Electromagnetic Compatibility - EMC EUROPE. :1–5.

Conducted emission of motors is a domain of interest for EMC as it may introduce disturbances in the system in which they are integrated. Nevertheless few publications deal with the susceptibility of motors, and especially, servomotors despite this devices are more and more used in automated production lines as well as for robotics. Recent papers have been released devoted to the possibility of compromising such systems by cyber-attacks. One could imagine the use of smart intentional electromagnetic interference to modify their behavior or damage them leading in the modification of the industrial process. This paper aims to identify the disturbances that may affect the behavior of a Commercial Off-The-Shelf servomotor when exposed to an electromagnetic field and the criticality of the effects with regards to its application. Experiments have shown that a train of radio frequency pulses may induce an erroneous reading of the position value of the servomotor and modify in an unpredictable way the movement of the motor's axis.

2018-02-21
Sun, S., Zhang, H., Du, Y..  2017.  The electromagnetic leakage analysis based on arithmetic operation of FPGA. 2017 IEEE 5th International Symposium on Electromagnetic Compatibility (EMC-Beijing). :1–5.

The chips in working state have electromagnetic energy leakage problem. We offer a method to analyze the problem of electromagnetic leakage when the chip is running. We execute a sequence of addition and subtraction arithmetic instructions on FPGA chip, then we use the near-field probe to capture the chip leakage of electromagnetic signals. The electromagnetic signal is collected for analysis and processing, the parts of addition and subtraction are classified and identified by SVM. In this paper, for the problem of electromagnetic leakage, six sets of data were collected for analysis and processing. Good results were obtained by using this method.

2017-12-20
Amendola, S., Occhiuzzi, C., Marrocco, G..  2017.  RFID sensing networks for critical infrastructure security: A real testbed in an energy smart grid. 2017 IEEE International Conference on RFID Technology Application (RFID-TA). :106–110.

The UHF Radiofrequency Identification technology offers nowadays a viable technological solution for the implementation of low-level environmental monitoring of connected critical infrastructures to be protected from both physical threats and cyber attacks. An RFID sensor network was developed within the H2020 SCISSOR project, by addressing the design of both hardware components, that is a new family of multi-purpose wireless boards, and of control software handling the network topology. The hierarchical system is able to the detect complex, potentially dangerous, events such as the un-authorized access to a restricted area, anomalies of the electrical equipments, or the unusual variation of environmental parameters. The first real-world test-bed has been deployed inside an operational smart-grid on the Favignana Island. Currently, the network is fully working and remotely accessible.