Visible to the public Biblio

Filters: Keyword is Decision trees  [Clear All Filters]
2023-06-30
Bhuyan, Hemanta Kumar, Arun Sai, T., Charan, M., Vignesh Chowdary, K., Brahma, Biswajit.  2022.  Analysis of classification based predicted disease using machine learning and medical things model. 2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT). :1–6.
{Health diseases have been issued seriously harmful in human life due to different dehydrated food and disturbance of working environment in the organization. Precise prediction and diagnosis of disease become a more serious and challenging task for primary deterrence, recognition, and treatment. Thus, based on the above challenges, we proposed the Medical Things (MT) and machine learning models to solve the healthcare problems with appropriate services in disease supervising, forecast, and diagnosis. We developed a prediction framework with machine learning approaches to get different categories of classification for predicted disease. The framework is designed by the fuzzy model with a decision tree to lessen the data complexity. We considered heart disease for experiments and experimental evaluation determined the prediction for categories of classification. The number of decision trees (M) with samples (MS), leaf node (ML), and learning rate (I) is determined as MS=20
2023-06-22
Žádník, Martin.  2022.  Towards Inference of DDoS Mitigation Rules. NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. :1–5.
DDoS attacks still represent a severe threat to network services. While there are more or less workable solutions to defend against these attacks, there is a significant space for further research regarding automation of reactions and subsequent management. In this paper, we focus on one piece of the whole puzzle. We strive to automatically infer filtering rules which are specific to the current DoS attack to decrease the time to mitigation. We employ a machine learning technique to create a model of the traffic mix based on observing network traffic during the attack and normal period. The model is converted into the filtering rules. We evaluate our approach with various setups of hyperparameters. The results of our experiments show that the proposed approach is feasible in terms of the capability of inferring successful filtering rules.
ISSN: 2374-9709
2023-04-14
Safitri, Winda Ayu, Ahmad, Tohari, Hostiadi, Dandy Pramana.  2022.  Analyzing Machine Learning-based Feature Selection for Botnet Detection. 2022 1st International Conference on Information System & Information Technology (ICISIT). :386–391.
In this cyber era, the number of cybercrime problems grows significantly, impacting network communication security. Some factors have been identified, such as malware. It is a malicious code attack that is harmful. On the other hand, a botnet can exploit malware to threaten whole computer networks. Therefore, it needs to be handled appropriately. Several botnet activity detection models have been developed using a classification approach in previous studies. However, it has not been analyzed about selecting features to be used in the learning process of the classification algorithm. In fact, the number and selection of features implemented can affect the detection accuracy of the classification algorithm. This paper proposes an analysis technique for determining the number and selection of features developed based on previous research. It aims to obtain the analysis of using features. The experiment has been conducted using several classification algorithms, namely Decision tree, k-NN, Naïve Bayes, Random Forest, and Support Vector Machine (SVM). The results show that taking a certain number of features increases the detection accuracy. Compared with previous studies, the results obtained show that the average detection accuracy of 98.34% using four features has the highest value from the previous study, 97.46% using 11 features. These results indicate that the selection of the correct number and features affects the performance of the botnet detection model.
2023-02-03
Alkawaz, Mohammed Hazim, Joanne Steven, Stephanie, Mohammad, Omar Farook, Gapar Md Johar, Md.  2022.  Identification and Analysis of Phishing Website based on Machine Learning Methods. 2022 IEEE 12th Symposium on Computer Applications & Industrial Electronics (ISCAIE). :246–251.
People are increasingly sharing their details online as internet usage grows. Therefore, fraudsters have access to a massive amount of information and financial activities. The attackers create web pages that seem like reputable sites and transmit the malevolent content to victims to get them to provide subtle information. Prevailing phishing security measures are inadequate for detecting new phishing assaults. To accomplish this aim, objective to meet for this research is to analyses and compare phishing website and legitimate by analyzing the data collected from open-source platforms through a survey. Another objective for this research is to propose a method to detect fake sites using Decision Tree and Random Forest approaches. Microsoft Form has been utilized to carry out the survey with 30 participants. Majority of the participants have poor awareness and phishing attack and does not obverse the features of interface before accessing the search browser. With the data collection, this survey supports the purpose of identifying the best phishing website detection where Decision Tree and Random Forest were trained and tested. In achieving high number of feature importance detection and accuracy rate, the result demonstrates that Random Forest has the best performance in phishing website detection compared to Decision Tree.
2022-08-26
Spyros, Chatzivasileiadis.  2020.  From Decision Trees and Neural Networks to MILP: Power System Optimization Considering Dynamic Stability Constraints. 2020 European Control Conference (ECC). :594–594.
This work introduces methods that unlock a series of applications for decision trees and neural networks in power system optimization. Capturing constraints that were impossible to capture before in a scalable way, we use decision trees (or neural networks) to extract an accurate representation of the non-convex feasible region which is characterized by both algebraic and differential equations. Applying an exact transformation, we convert the information encoded in the decision trees and the neural networks to linear decision rules that we incorporate as conditional constraints in an optimization problem (MILP or MISOCP). Our approach introduces a framework to unify security considerations with electricity market operations, capturing not only steady-state but also dynamic stability constraints in power system optimization, and has the potential to eliminate redispatching costs, leading to savings of millions of euros per year.
2022-06-09
Atluri, Venkata, Horne, Jeff.  2021.  A Machine Learning based Threat Intelligence Framework for Industrial Control System Network Traffic Indicators of Compromise. SoutheastCon 2021. :1–5.
Cyber-attacks on our Nation's Critical Infrastructure are growing. In this research, a Cyber Threat Intelligence (CTI) framework is proposed, developed, and tested. The results of the research, using 5 different simulated attacks on a dataset from an Industrial Control System (ICS) testbed, are presented with the extracted IOCs. The Bagging Decision Trees model showed the highest performance of testing accuracy (94.24%), precision (0.95), recall (0.93), and F1-score (0.94) among the 9 different machine learning models studied.
2022-06-07
Varsha Suresh, P., Lalitha Madhavu, Minu.  2021.  Insider Attack: Internal Cyber Attack Detection Using Machine Learning. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :1–7.
A Cyber Attack is a sudden attempt launched by cybercriminals against multiple computers or networks. According to evolution of cyber space, insider attack is the most serious attack faced by end users, all over the world. Cyber Security reports shows that both US federal Agency as well as different organizations faces insider threat. Machine learning (ML) provide an important technology to secure data from insider threats. Random Forest is the best algorithm that focus on user's action, services and ability for insider attack detection based on data granularity. Substantial raise in the count of decision tree, increases the time consumption and complexity of Random Forest. A novel algorithm Known as Random Forest With Randomized Weighted Fuzzy Feature Set (RF-RWFF) is developed. Fuzzy Membership Function is used for feature aggregation and Randomized Weighted Majority Algorithm (RWMA) is used in the prediction part of Random Forest (RF) algorithm to perform voting. RWMA transform conventional Random Forest, to a perceptron like algorithm and increases the miliage. The experimental results obtained illustrate that the proposed model exhibits an overall improvement in accuracy and recall rate with very much decrease in time complexity compared to conventional Random Forest algorithm. This algorithm can be used in organization and government sector to detect insider fastly and accurately.
2022-04-19
Al-Eidi, Shorouq, Darwish, Omar, Chen, Yuanzhu, Husari, Ghaith.  2021.  SnapCatch: Automatic Detection of Covert Timing Channels Using Image Processing and Machine Learning. IEEE Access. 9:177–191.
With the rapid growth of data exfiltration carried out by cyber attacks, Covert Timing Channels (CTC) have become an imminent network security risk that continues to grow in both sophistication and utilization. These types of channels utilize inter-arrival times to steal sensitive data from the targeted networks. CTC detection relies increasingly on machine learning techniques, which utilize statistical-based metrics to separate malicious (covert) traffic flows from the legitimate (overt) ones. However, given the efforts of cyber attacks to evade detection and the growing column of CTC, covert channels detection needs to improve in both performance and precision to detect and prevent CTCs and mitigate the reduction of the quality of service caused by the detection process. In this article, we present an innovative image-based solution for fully automated CTC detection and localization. Our approach is based on the observation that the covert channels generate traffic that can be converted to colored images. Leveraging this observation, our solution is designed to automatically detect and locate the malicious part (i.e., set of packets) within a traffic flow. By locating the covert parts within traffic flows, our approach reduces the drop of the quality of service caused by blocking the entire traffic flows in which covert channels are detected. We first convert traffic flows into colored images, and then we extract image-based features for detection covert traffic. We train a classifier using these features on a large data set of covert and overt traffic. This approach demonstrates a remarkable performance achieving a detection accuracy of 95.83% for cautious CTCs and a covert traffic accuracy of 97.83% for 8 bit covert messages, which is way beyond what the popular statistical-based solutions can achieve.
Conference Name: IEEE Access
2022-04-18
Aivatoglou, Georgios, Anastasiadis, Mike, Spanos, Georgios, Voulgaridis, Antonis, Votis, Konstantinos, Tzovaras, Dimitrios.  2021.  A Tree-Based Machine Learning Methodology to Automatically Classify Software Vulnerabilities. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :312–317.
Software vulnerabilities have become a major problem for the security analysts, since the number of new vulnerabilities is constantly growing. Thus, there was a need for a categorization system, in order to group and handle these vulnerabilities in a more efficient way. Hence, the MITRE corporation introduced the Common Weakness Enumeration that is a list of the most common software and hardware vulnerabilities. However, the manual task of understanding and analyzing new vulnerabilities by security experts, is a very slow and exhausting process. For this reason, a new automated classification methodology is introduced in this paper, based on the vulnerability textual descriptions from National Vulnerability Database. The proposed methodology, combines textual analysis and tree-based machine learning techniques in order to classify vulnerabilities automatically. The results of the experiments showed that the proposed methodology performed pretty well achieving an overall accuracy close to 80%.
2022-04-13
Kousar, Heena, Mulla, Mohammed Moin, Shettar, Pooja, D. G., Narayan.  2021.  DDoS Attack Detection System using Apache Spark. 2021 International Conference on Computer Communication and Informatics (ICCCI). :1—5.
Distributed Denial of Service Attacks (DDoS) are most widely used cyber-attacks. Thus, design of DDoS detection mechanisms has attracted attention of researchers. Design of these mechanisms involves building statistical and machine learning models. Most of the work in design of mechanisms is focussed on improving the accuracy of the model. However, due to large volume of network traffic, scalability and performance of these techniques is an important research issue. In this work, we use Apache Spark framework for detection of DDoS attacks. We use NSL-KDD Cup as a benchmark dataset for experimental analysis. The results reveal that random forest performs better than decision trees and distributed processing improves the performance in terms of pre-processing and training time.
2022-03-23
Singhal, Abhinav, Maan, Akash, Chaudhary, Daksh, Vishwakarma, Dinesh.  2021.  A Hybrid Machine Learning and Data Mining Based Approach to Network Intrusion Detection. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :312–318.
This paper outlines an approach to build an Intrusion detection system for a network interface device. This research work has developed a hybrid intrusion detection system which involves various machine learning techniques along with inference detection for a comparative analysis. It is explained in 2 phases: Training (Model Training and Inference Network Building) and Detection phase (Working phase). This aims to solve all the current real-life problem that exists in machine learning algorithms as machine learning techniques are stiff they have their respective classification region outside which they cease to work properly. This paper aims to provide the best working machine learning technique out of the many used. The machine learning techniques used in comparative analysis are Decision Tree, Naïve Bayes, K-Nearest Neighbors (KNN) and Support Vector Machines (SVM) along with NSLKDD dataset for testing and training of our Network Intrusion Detection Model. The accuracy recorded for Decision Tree, Naïve Bayes, K-Nearest Neighbors (KNN) and Support Vector Machines(SVM) respectively when tested independently are 98.088%, 82.971%, 95.75%, 81.971% and when tested with inference detection model are 98.554%, 66.687%, 97.605%, 93.914%. Therefore, it can be concluded that our inference detection model helps in improving certain factors which are not detected using conventional machine learning techniques.
2022-03-08
Yang, Cuicui, Liu, Pinjie.  2021.  Big Data Nearest Neighbor Similar Data Retrieval Algorithm based on Improved Random Forest. 2021 International Conference on Big Data Analysis and Computer Science (BDACS). :175—178.
In the process of big data nearest neighbor similar data retrieval, affected by the way of data feature extraction, the retrieval accuracy is low. Therefore, this paper proposes the design of big data nearest neighbor similar data retrieval algorithm based on improved random forest. Through the improvement of random forest model and the construction of random decision tree, the characteristics of current nearest neighbor big data are clarified. Based on the improved random forest, the hash code is generated. Finally, combined with the Hamming distance calculation method, the nearest neighbor similar data retrieval of big data is realized. The experimental results show that: in the multi label environment, the retrieval accuracy is improved by 9% and 10%. In the single label environment, the similar data retrieval accuracy of the algorithm is improved by 12% and 28% respectively.
2022-03-01
Vrána, Roman, Ko\v renek, Jan.  2021.  Efficient Acceleration of Decision Tree Algorithms for Encrypted Network Traffic Analysis. 2021 24th International Symposium on Design and Diagnostics of Electronic Circuits Systems (DDECS). :115–118.
Network traffic analysis and deep packet inspection are time-consuming tasks, which current processors can not handle at 100 Gbps speed. Therefore security systems need fast packet processing with hardware acceleration. With the growing of encrypted network traffic, it is necessary to extend Intrusion Detection Systems (IDSes) and other security tools by new detection methods. Security tools started to use classifiers trained by machine learning techniques based on decision trees. Random Forest, Compact Random Forest and AdaBoost provide excellent result in network traffic analysis. Unfortunately, hardware architectures for these machine learning techniques need high utilisation of on-chip memory and logic resources. Therefore we propose several optimisations of highly pipelined architecture for acceleration of machine learning techniques based on decision trees. The optimisations use the various encoding of a feature vector to reduce hardware resources. Due to the proposed optimisations, it was possible to reduce LUTs by 70.5 % for HTTP brute force attack detection and BRAMs by 50 % for application protocol identification. Both with only negligible impact on classifiers' accuracy. Moreover, proposed optimisations reduce wires and multiplexors in the processing pipeline, positively affecting the proposed architecture's maximal achievable frequency.
2022-02-07
Osman, Mohd Zamri, Abidin, Ahmad Firdaus Zainal, Romli, Rahiwan Nazar, Darmawan, Mohd Faaizie.  2021.  Pixel-based Feature for Android Malware Family Classification using Machine Learning Algorithms. 2021 International Conference on Software Engineering Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM). :552–555.
‘Malicious software’ or malware has been a serious threat to the security and privacy of all mobile phone users. Due to the popularity of smartphones, primarily Android, this makes them a very viable target for spreading malware. In the past, many solutions have proved ineffective and have resulted in many false positives. Having the ability to identify and classify malware will help prevent them from spreading and evolving. In this paper, we study the effectiveness of the proposed classification of the malware family using a pixel level as features. This study has implemented well-known machine learning and deep learning classifiers such as K-Nearest Neighbours (k-NN), Support Vector Machine (SVM), Naïve Bayes (NB), Decision Tree, and Random Forest. A binary file of 25 malware families is converted into a fixed grayscale image. The grayscale images were then extracted transforming the size 100x100 into a single format into 100000 columns. During this phase, none of the columns are removed as to remain the patterns in each malware family. The experimental results show that our approach achieved 92% accuracy in Random Forest, 88% in SVM, 81% in Decision Tree, 80% in k-NN and 56% in Naïve Bayes classifier. Overall, the pixel-based feature also reveals a promising technique for identifying the family of malware with great accuracy, especially using the Random Forest classifier.
2022-01-31
Shivaie, Mojtaba, Mokhayeri, Mohammad, Narooie, Mohammadali, Ansari, Meisam.  2021.  A White-Box Decision Tree-Based Preventive Strategy for Real-Time Islanding Detection Using Wide-Area Phasor Measurement. 2021 IEEE Texas Power and Energy Conference (TPEC). :1–6.
With the ever-increasing energy demand and enormous development of generation capacity, modern bulk power systems are mostly pushed to operate with narrower security boundaries. Therefore, timely and reliable assessment of power system security is an inevitable necessity to prevent widespread blackouts and cascading outages. In this paper, a new white-box decision tree-based preventive strategy is presented to evaluate and enhance the power system dynamic security versus the credible N-K contingencies originating from transient instabilities. As well, a competent operating measure is expertly defined to detect and identify the islanding and non-islanding conditions with the aid of a wide-area phasor measurement system. The newly developed strategy is outlined by a three-level simulation with the aim of guaranteeing the power system dynamic security. In the first-level, six hundred islanding and non-islanding scenarios are generated using an enhanced version of the ID3 algorithm, referred to as the C4.5 algorithms. In the second-level, optimal C4.5 decision trees are offline trained based on operating parameters achieved by the reduction error pruning method. In the third level, however, all trained decision trees are rigorously investigated offline and online; and then, the most accurate and reliable decision tree is selected. The newly developed strategy is examined on the IEEE New England 39-bus test system, and its effectiveness is assured by simulation studies.
2022-01-10
Ugwu, Chukwuemeka Christian, Obe, Olumide Olayinka, Popoọla, Olugbemiga Solomon, Adetunmbi, Adebayo Olusọla.  2021.  A Distributed Denial of Service Attack Detection System using Long Short Term Memory with Singular Value Decomposition. 2020 IEEE 2nd International Conference on Cyberspac (CYBER NIGERIA). :112–118.
The increase in online activity during the COVID 19 pandemic has generated a surge in network traffic capable of expanding the scope of DDoS attacks. Cyber criminals can now afford to launch massive DDoS attacks capable of degrading the performances of conventional machine learning based IDS models. Hence, there is an urgent need for an effective DDoS attack detective model with the capacity to handle large magnitude of DDoS attack traffic. This study proposes a deep learning based DDoS attack detection system using Long Short Term Memory (LSTM). The proposed model was evaluated on UNSW-NB15 and NSL-KDD intrusion datasets, whereby twenty-three (23) and twenty (20) attack features were extracted from UNSW-NB15 and NSL-KDD, respectively using Singular Value Decomposition (SVD). The results from the proposed model show significant improvement when compared with results from some conventional machine learning techniques such as Naïve Bayes (NB), Decision Tree (DT), and Support Vector Machine (SVM) with accuracies of 94.28% and 90.59% on both datasets, respectively. Furthermore, comparative analysis of LSTM with other deep learning results reported in literature justified the choice of LSTM among its deep learning peers in detecting DDoS attacks over a network.
Shirmarz, Alireza, Ghaffari, Ali, Mohammadi, Ramin, Akleylek, Sedat.  2021.  DDOS Attack Detection Accuracy Improvement in Software Defined Network (SDN) Using Ensemble Classification. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :111–115.
Nowadays, Denial of Service (DOS) is a significant cyberattack that can happen on the Internet. This attack can be taken place with more than one attacker that in this case called Distributed Denial of Service (DDOS). The attackers endeavour to make the resources (server & bandwidth) unavailable to legitimate traffic by overwhelming resources with malicious traffic. An appropriate security module is needed to discriminate the malicious flows with high accuracy to prevent the failure resulting from a DDOS attack. In this paper, a DDoS attack discriminator will be designed for Software Defined Network (SDN) architecture so that it can be deployed in the POX controller. The simulation results present that the proposed model can achieve an accuracy of about 99.4%which shows an outstanding percentage of improvement compared with Decision Tree (DT), K-Nearest Neighbour (KNN), Support Vector Machine (SVM) approaches.
Sudar, K.Muthamil, Beulah, M., Deepalakshmi, P., Nagaraj, P., Chinnasamy, P..  2021.  Detection of Distributed Denial of Service Attacks in SDN using Machine learning techniques. 2021 International Conference on Computer Communication and Informatics (ICCCI). :1–5.
Software-defined network (SDN) is a network architecture that used to build, design the hardware components virtually. We can dynamically change the settings of network connections. In the traditional network, it's not possible to change dynamically, because it's a fixed connection. SDN is a good approach but still is vulnerable to DDoS attacks. The DDoS attack is menacing to the internet. To prevent the DDoS attack, the machine learning algorithm can be used. The DDoS attack is the multiple collaborated systems that are used to target the particular server at the same time. In SDN control layer is in the center that link with the application and infrastructure layer, where the devices in the infrastructure layer controlled by the software. In this paper, we propose a machine learning technique namely Decision Tree and Support Vector Machine (SVM) to detect malicious traffic. Our test outcome shows that the Decision Tree and Support Vector Machine (SVM) algorithm provides better accuracy and detection rate.
2021-12-22
Renda, Alessandro, Ducange, Pietro, Gallo, Gionatan, Marcelloni, Francesco.  2021.  XAI Models for Quality of Experience Prediction in Wireless Networks. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–6.
Explainable Artificial Intelligence (XAI) is expected to play a key role in the design phase of next generation cellular networks. As 5G is being implemented and 6G is just in the conceptualization stage, it is increasingly clear that AI will be essential to manage the ever-growing complexity of the network. However, AI models will not only be required to deliver high levels of performance, but also high levels of explainability. In this paper we show how fuzzy models may be well suited to address this challenge. We compare fuzzy and classical decision tree models with a Random Forest (RF) classifier on a Quality of Experience classification dataset. The comparison suggests that, in our setting, fuzzy decision trees are easier to interpret and perform comparably or even better than classical ones in identifying stall events in a video streaming application. The accuracy drop with respect to RF classifier, which is considered to be a black-box ensemble model, is counterbalanced by a significant gain in terms of explainability.
2021-11-29
Patel, Kumud, Agrahari, Sudhanshu, Srivastava, Saijshree.  2020.  Survey on Fake Profile Detection on Social Sites by Using Machine Learning Algorithm. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1236–1240.
To avoid the spam message, malicious and cyber bullies activities which are mostly done by the fake profile. These activities challenge the privacy policies of the social network communities. These fake profiles are responsible for spread false information on social communities. To identify the fake profile, duplicate, spam and bots account there is much research work done in this area. By using a machine-learning algorithm, most of the fake accounts detected successfully. This paper represents the review of Fake Profile Detection on Social Site by Using Machine Learning.
2021-11-08
Shaukat, Kamran, Luo, Suhuai, Chen, Shan, Liu, Dongxi.  2020.  Cyber Threat Detection Using Machine Learning Techniques: A Performance Evaluation Perspective. 2020 International Conference on Cyber Warfare and Security (ICCWS). :1–6.
The present-day world has become all dependent on cyberspace for every aspect of daily living. The use of cyberspace is rising with each passing day. The world is spending more time on the Internet than ever before. As a result, the risks of cyber threats and cybercrimes are increasing. The term `cyber threat' is referred to as the illegal activity performed using the Internet. Cybercriminals are changing their techniques with time to pass through the wall of protection. Conventional techniques are not capable of detecting zero-day attacks and sophisticated attacks. Thus far, heaps of machine learning techniques have been developed to detect the cybercrimes and battle against cyber threats. The objective of this research work is to present the evaluation of some of the widely used machine learning techniques used to detect some of the most threatening cyber threats to the cyberspace. Three primary machine learning techniques are mainly investigated, including deep belief network, decision tree and support vector machine. We have presented a brief exploration to gauge the performance of these machine learning techniques in the spam detection, intrusion detection and malware detection based on frequently used and benchmark datasets.
2021-10-12
Li, Yongjian, Cao, Taifeng, Jansen, David N., Pang, Jun, Wei, Xiaotao.  2020.  Accelerated Verification of Parametric Protocols with Decision Trees. 2020 IEEE 38th International Conference on Computer Design (ICCD). :397–404.
Within a framework for verifying parametric network protocols through induction, one needs to find invariants based on a protocol instance of a small number of nodes. In this paper, we propose a new approach to accelerate parameterized verification by adopting decision trees to represent the state space of a protocol instance. Such trees can be considered as a knowledge base that summarizes all behaviors of the protocol instance. With this knowledge base, we are able to efficiently construct an oracle to effectively assess candidates of invariants of the protocol, which are suggested by an invariant finder. With the discovered invariants, a formal proof for the correctness of the protocol can be derived in the framework after proper generalization. The effectiveness of our method is demonstrated by experiments with typical benchmarks.
2021-09-21
bin Asad, Ashub, Mansur, Raiyan, Zawad, Safir, Evan, Nahian, Hossain, Muhammad Iqbal.  2020.  Analysis of Malware Prediction Based on Infection Rate Using Machine Learning Techniques. 2020 IEEE Region 10 Symposium (TENSYMP). :706–709.
In this modern, technological age, the internet has been adopted by the masses. And with it, the danger of malicious attacks by cybercriminals have increased. These attacks are done via Malware, and have resulted in billions of dollars of financial damage. This makes the prevention of malicious attacks an essential part of the battle against cybercrime. In this paper, we are applying machine learning algorithms to predict the malware infection rates of computers based on its features. We are using supervised machine learning algorithms and gradient boosting algorithms. We have collected a publicly available dataset, which was divided into two parts, one being the training set, and the other will be the testing set. After conducting four different experiments using the aforementioned algorithms, it has been discovered that LightGBM is the best model with an AUC Score of 0.73926.
2021-04-29
Fischer, A., Janneck, J., Kussmaul, J., Krätzschmar, N., Kerschbaum, F., Bodden, E..  2020.  PASAPTO: Policy-aware Security and Performance Trade-off Analysis–Computation on Encrypted Data with Restricted Leakage. 2020 IEEE 33rd Computer Security Foundations Symposium (CSF). :230—245.

This work considers the trade-off between security and performance when revealing partial information about encrypted data computed on. The focus of our work is on information revealed through control flow side-channels when executing programs on encrypted data. We use quantitative information flow to measure security, running time to measure performance and program transformation techniques to alter the trade-off between the two. Combined with information flow policies, we perform a policy-aware security and performance trade-off (PASAPTO) analysis. We formalize the problem of PASAPTO analysis as an optimization problem, prove the NP-hardness of the corresponding decision problem and present two algorithms solving it heuristically. We implemented our algorithms and combined them with the Dataflow Authentication (DFAuth) approach for outsourcing sensitive computations. Our DFAuth Trade-off Analyzer (DFATA) takes Java Bytecode operating on plaintext data and an associated information flow policy as input. It outputs semantically equivalent program variants operating on encrypted data which are policy-compliant and approximately Pareto-optimal with respect to leakage and performance. We evaluated DFATA in a commercial cloud environment using Java programs, e.g., a decision tree program performing machine learning on medical data. The decision tree variant with the worst performance is 357% slower than the fastest variant. Leakage varies between 0% and 17% of the input.

2021-03-09
Susanto, Stiawan, D., Arifin, M. A. S., Idris, M. Y., Budiarto, R..  2020.  IoT Botnet Malware Classification Using Weka Tool and Scikit-learn Machine Learning. 2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI). :15—20.

Botnet is one of the threats to internet network security-Botmaster in carrying out attacks on the network by relying on communication on network traffic. Internet of Things (IoT) network infrastructure consists of devices that are inexpensive, low-power, always-on, always connected to the network, and are inconspicuous and have ubiquity and inconspicuousness characteristics so that these characteristics make IoT devices an attractive target for botnet malware attacks. In identifying whether packet traffic is a malware attack or not, one can use machine learning classification methods. By using Weka and Scikit-learn analysis tools machine learning, this paper implements four machine learning algorithms, i.e.: AdaBoost, Decision Tree, Random Forest, and Naïve Bayes. Then experiments are conducted to measure the performance of the four algorithms in terms of accuracy, execution time, and false positive rate (FPR). Experiment results show that the Weka tool provides more accurate and efficient classification methods. However, in false positive rate, the use of Scikit-learn provides better results.