Biblio
This work considers the trade-off between security and performance when revealing partial information about encrypted data computed on. The focus of our work is on information revealed through control flow side-channels when executing programs on encrypted data. We use quantitative information flow to measure security, running time to measure performance and program transformation techniques to alter the trade-off between the two. Combined with information flow policies, we perform a policy-aware security and performance trade-off (PASAPTO) analysis. We formalize the problem of PASAPTO analysis as an optimization problem, prove the NP-hardness of the corresponding decision problem and present two algorithms solving it heuristically. We implemented our algorithms and combined them with the Dataflow Authentication (DFAuth) approach for outsourcing sensitive computations. Our DFAuth Trade-off Analyzer (DFATA) takes Java Bytecode operating on plaintext data and an associated information flow policy as input. It outputs semantically equivalent program variants operating on encrypted data which are policy-compliant and approximately Pareto-optimal with respect to leakage and performance. We evaluated DFATA in a commercial cloud environment using Java programs, e.g., a decision tree program performing machine learning on medical data. The decision tree variant with the worst performance is 357% slower than the fastest variant. Leakage varies between 0% and 17% of the input.
Botnet is one of the threats to internet network security-Botmaster in carrying out attacks on the network by relying on communication on network traffic. Internet of Things (IoT) network infrastructure consists of devices that are inexpensive, low-power, always-on, always connected to the network, and are inconspicuous and have ubiquity and inconspicuousness characteristics so that these characteristics make IoT devices an attractive target for botnet malware attacks. In identifying whether packet traffic is a malware attack or not, one can use machine learning classification methods. By using Weka and Scikit-learn analysis tools machine learning, this paper implements four machine learning algorithms, i.e.: AdaBoost, Decision Tree, Random Forest, and Naïve Bayes. Then experiments are conducted to measure the performance of the four algorithms in terms of accuracy, execution time, and false positive rate (FPR). Experiment results show that the Weka tool provides more accurate and efficient classification methods. However, in false positive rate, the use of Scikit-learn provides better results.